The Effect of Thickness of Plate on Fatigue Crack Propagation Behavior by Indentations

S. H. Song (Korea Univ. Dept. of Mechanical Engineering), J. H. Choi (Korea Univ. Graduate School)

Keywords: Fatigue, Indentation, Fatigue Crack Propagation Rate, Crack Opening Load, Effective Stress Intensity Factor Ratio, Residual Stress

Abstract: Making Brinell indentations facing each other near the crack tip is very effective method in increasing fatigue life. In this paper, fatigue test was performed after indentation to investigate the effect of thickness of specimen. The results show that fatigue lives increased by making indentation and retardation cycle is inverse proportional to thickness of specimen.

1. 서 론

산업 현장에서의 구조물이나 기계 부품 등은 사용 중의 제속적인 반복하중의 작용으로 피로 근열이 발생.进而하여 최종파단에 이르는 경우가 많다. 피로 근열은 물질의 동력으로 인한 원자 핵합이나 재료 중의 계열물, 미소 결함, 기공 등의 초기 결함에서, 또는 구멍 등의 설계상의 불가피한 응력지향부에서 발생한 후 반복하중의 작용으로 성장하여 최종파단에 이르는 경우가 많으나, 현재에는 여러 가지 의비와 임사법이 발달하 여 내재한 초기 근열이나 성장하는 피로 근열들을 진단 할 수 있다. 하지만, 여러 가지 이유로 피로 근열을 발견한 즉시 개체하는 것이 어려운 경우 근열의 성장을 지연 시켜 피로 수명을 연장시키는 방법이 필요하다고 생각된다.

피로 근열의 성장 속도를 지연시키는 방법에는 드릴로 근열선단에 구성(stop hole)을 둔 후에 단단한 도자기선단에 걸리는 응력 집중을 완화시키는 방법이 있으나, Brock에 의하면 근열선단에 stop hole을 둔 방법은 구멍 가까이에서의 근열전파속도의 가속과 전체적인 근열의 일부를 수 있는 구멍으로 인해 증가된 격함의 크기 때문에 상쇄되어 큰 지연 효과는 나타나지 않는다고 하였다. 한편, 압축장재응력의 근열을 이용하여 피로 근열의 발생, 또는 전파를 지연시키는 방법은 De Rijks의, Van Leeuwen의, Eggwirtz의 등에 의해 연구되었는데 그들은 근열선단에 stop hole을 둔 후 구멍을 팽창시키거나 근열선단에 강철 볼을 놓다 자국을 낼 결과 인위적인 국부적 압축장재응력 장이 생겨 근 지연 효과가 생기는 것을 보고하였으며, 옥가한, 옥가한, 옥가한의, 옥가한의, 옥가한의는 강철을 자국의 지연 효과를 연구하여 압착작용 시에 근열의 강화법으로 유효하다고 하였다.

한편, 송실은 피로근열의 선단에 위치기를 달리함을 가공하여 피로 시험을 수행하면 압착작용시에 따라 정도의 차이는 있으나 피로 근열 전파 지연 구간이 생겨 피로 수명이 대폭 향상된다고 하였다.

본 연구에서는 피로근열선단에 가공한 압착으로 인한 피로 근열 전파지연현상에 대한 시험판의 두께의 영향을 알아보고 있으며, 이들 피로근열 전파속도의 변화와 근열 열림경동을 고려하여 연구하였다.

2. 실험
2.1 재료 및 시험편

본 실험에 사용한 재료는 포항제철(주)에서 생산된 두께 6mm의 중기용 고장도강 POSTEN 60RE이며 그 화학적 성분은 Table 1과 같다.KS B 0801의 규정에 따라 시험편을 가공하여 압연 방향으로 형성 인장 시험에서 얻은 기계적 성질들은 Table 2에 나타내었다. 재료는 항복 용력 σ0.2=542MPa, 인장 강도 σu=638MPa이다.

Table 1. The chemical composition of POSTEN 60RE (Wt %)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.097</td>
<td>0.268</td>
<td>1.479</td>
<td>0.021</td>
<td>0.0054</td>
</tr>
</tbody>
</table>

Table 2. The mechanical properties of POSTEN 60RE

<table>
<thead>
<tr>
<th>Yield Stress (MPa)</th>
<th>Tensile Stress (MPa)</th>
<th>Elongation (%)</th>
<th>Poisson's Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>542</td>
<td>638</td>
<td>29</td>
<td>0.28</td>
</tr>
</tbody>
</table>

피로 시험편은 잔해를 길이 150mm, 폭 50mm로 가공한 다음, 판 두께를 2.30mm,3.10mm, 4.05mm로 하여 평판 가공한 후, 두께 0.5mm의 휠커터로 14mm의 노치를 인상 직각방향으로 가공하여 편축 노치 시험편(Single Edged Notched Specimen)으로 시험편을 제작하였으며, 시험편의 모양과 차수는 Fig. 1과 같다.

2.2 실험 방법

실험은 각각의 시험편에 대해 노치 선단에서 4mm까지 일정 하중진폭상태에서 피로 시험을 하여 피로 균열을 전파시킨 다음, 시험편 양측에서 지름 10mm의 강철구를 브렌넬 경도계로 시험편 양측에서 4.64KN의 하중으로 놓려 균열선단에 압축을 가공한 후 피로 시험을 수행하였는데, 본 연구에서는 압축가공시 판두께의 피로균열 전파지동에 대한 영향을 알아보기 위해서 판두께를 2.35mm, 3.10mm, 4.05mm로 변화시켜 실험을 수행하였다.

피로 시험 시 압축 가공에 의한 균열 열림과 피로 균열 전파 가중계의 관계를 알아보기 위해 균열 열림을 고려하였는데, 균열 열림은 시험편 측면에 클립게이지들 부착하여 변형 신호를, 모드에에서 하중 신호를 컴퓨터의 A/D 컨버터로 받아 컴퓨터로 처리하여 얻은 하중-감전 변위 선도에서 균열열림 합응을 정하였다.

본 실험에 사용한 시험기는 전기유압식 인장 압축 시험기로서 반복 속도는 10Hz이며, 실험하 중은 응력비 0.2로 정하였고, 노치 선단에서의 응력과 대계수별로 A-K가 실험시식시 24 MPa√m에 되도록 하였다. 그리고 균열길이는 0.01mm까지 측정이 가능한 금속현미경으로 측정하였습니다.

3. 결과 및 고찰

3-1. 피로수명의 변화

Fig. 1 Specimen configuration

Fig. 2 Crack length and number of cycle with various thickness
시험대 두께를 변화시켜서 실험했을 때의 균열길이와 하중반복수와의 관계를 Fig. 2에 나타내었는데, 압온이 가공되지 않은 시험대와 비교해서 볼 때 시험대 두께에 관계 없이 압온이 가공된 모든 시험대에서 압온이 가공된 균열길이 18mm이후 피로균열 전파전환상이 일어나 피로수명이 향상된 것을 알 수 있으며, 어느정도 지연된 이후 다시 균열길이가 증가하기 시작한다. 이 때 지연정도, 즉 피로수명 향상정도는 시편의 두께가 있다음수록 더 커서 시험대 두께 2.35mm의 경우가 가장 지연시간이 길고 다음 3.10mm, 4.05mm의 순이다.

피로균열의 전파전환에 의한 피로수명량상을 더 잘 알아보기 위하여, Fig. 3에 피로균열 전파속도를 하중반복수에 대해 나타내었다. 압온에 가공되지 않은 시험대의 결과와 비교해보면 압온이 가공된 시험대의 피로균열 전파 지연폭은 압온이 가공된 18mm에서 피로균열 전파속도가 급격히 감소하는 피로균열 전파속도의 감소폭은 전파속도가 크게 변하지 않는 평안부, 그리고 다시 급격히 속도를 회복하게 되는 증가부분으로 나눌 수 있다.

여기서 압온을 가공한 시험대의 지연시간에서, 급격한 전파속도 변화를 보이는 감소부분과 증가하는 부분을 무시할 수 있으며, 압온이 가공된 피로수명의 양상정도는 평안부로 근사할 수 있다. 각각의 시험대에서는 평안부는 시험대 두께 2.35mm일때 가장고 평안부의 하중반복수 $\Delta N = 307000$ (cycles)이며, 두께 3.10mm일때 $\Delta N = 170000$ (cycles), 두께 4.05mm에서는 $\Delta N = 43000$ (cycles)로서 압온을 가공하지 않은 시험대에서의 전해수명이 약 48000cycle인데 비하여 보면 피로수명은 대폭 향상된 것을 알 수 있다.

이때 압온지름 d를 시험대두께 B로 나눠 무차원한 변수 d/B에 대해 지연시간의 하중반복수를 나타내어 보면 Fig. 4와 같이 지연되는 하중반복수가 d/B에 선형적으로 비례하는데, 지연시간의 하중반복수와 무차원수 (d/B)은 $\Delta N = 737821*(d/B)-299856$의 선형적인 관계를 가지는 것을 알 수 있다.

다시말해 압온지름과 시험대 두께가 비슷한 경우 시험대 두께의 변화에 의한 압온가공의 영향은 지연시간의 하중반복수 시험대 두께의 영역에 선형적으로 비례하는 것으로 나타난다.

3-2. 피로균열 전파속도와 굽면당기동

Fig. 5는 피로균열 전파속도를 균열길이에 대해 나타낸 것이다. 시험대 두께에 관계없이 두께판에서부터 균열길이 18mm까지 모든 시험대에서 피로균열 전파속도가

Fig. 3 Crack propagation rate and number of cycle with various thickness

Fig. 4 Thickness effect on retardation
제수범위비 $U = (K_{\text{max}} - K_{\text{p}}) / (K_{\text{max}} - K_{\text{min}})$의 변화도 확인할 수 있다. Fig 6은 유효응력환계수범위비 U를 균열길이에 대해 나타낸 것으로 유효응력환계수범위비 U는 Fig 5의 피로균열 전파속도의 변화를 잘 반영하고 있는 것을 알 수 있으며, 이 때 최저 U값의 순서는 Fig 5의 순서와 동일하다.

이러한 사실로부터 압축을 가공하였을 때의 피로균열 전파지연 현상은 균열선단에 적용되는 응력환계수범위비의 감소가 직접적인 원인이며, 응력환계수범위비의 감소 원인은 압축가공으로 인해 균열선단에 생긴 압축차류응력이라고 생각된다.

(2) 피로수명의 항성정도는 피로균열 전파속도를 하중변복수에 대해 나타내었을때의 평균도로 근사할 수 있다.
(3) 피로수명의 항성정도는 시험전후계의 역수에 선형적으로 비례한다.
(4) 압축의 가공후 균열전파속도는 크게 저하하였으며 균열선단에 압축의 값을 지나가며 다시 균열전파속도를 회복하기 시작한다.
(5) 피로균열 전파속도의 변화는 하중-감산변위선도에서 얻은 유효응력환계수범위비의 변화로 확인할 수 있으며 이는 균열선단에 작용하는 응력환계수범위비가 변화가 원인이다.

4. 결론

여러가지 두께를 가진 시험편에서, 이미 발생하여 전파하고 있는 피로균열의 전산에 지름 10mm의 강화구를 시험편의 양쪽에서 늘리 압축을 가공하여 피로균열 전파주를 관찰하였으며 그 결과는 다음과 같다.

(1) 피로균열 선단근방에 압축을 가공하면 균열의 전파를 지연시켜 피로수명이 대폭 항상되므로 균열이나 결함등의 융합점중부를 가진 판재의 강화법으로 유용하다.

참고문헌

Fig. 5 Crack propagation rate and crack length with various thickness

Fig. 6 Crack length and effective stress intensity factor ratio with various thickness

9. 宋頌春, 樹真弘, 1995, "압착가공위치에 따른 피로구역
전파저항," 95년 한국정밀공학회 춘계학술대회 논문집, p. 32