A Study on the Indexing Table by the Pneumatic Operation

오 진 안(한양대 대학원), 강 안 각(주)주강 로보텍, 한 창 수(한양대 기계공학과)
Changsoo Han(Hanyang Univ.), Inkak Gang(Jukang Robotech), Jinan Oh(Graduate School, Hanyang Univ.),

ABSTRACT

In this study, we developed the indexing table operating by pneumatic actuation. We doubled the torque of index table by using specially designed air pipe and two pistons. And by locating two pistons symmetrically about rotating axis, the efficiency of space is maximized.
We perform several tests and this results is written below.

Key Words : index table, torque, pneumatic actuation

1. 서론

본 연구에서는 새로운 방식의 공기압 구동 원주 할출 기구를 설계하였다. 본 연구에서 개발된 원주 할출 기구는 기존의 공기압을 이용한 원주 할출 기구와 달리 2개의 피스톤을 사용하였으며 특수하게 작동된 관로를 따라 압축 공기로 전달하여 추력을 중대시킬 수 있는 방법을 새롭게 개발하였다.

2. 기기의 구조 및 원리

본 연구에서 개발한 공기압 원주 할출 기구의 구동부의 개념도는 Fig. 2.1과 같다.
그림과 같이 피스톤 A, B에는 적선의 레이가 가공되어 있고, 편하중으로부터 피스톤 패킹을 보호하기 위한 웨어링(Wearing)이 부착되어 있다. 기존의 공기압 구동 원주 할출 기구는 한 개의 피스톤으로 회전력을 발생시키는데 반하여, 본 연구에서 개발한 할출 기구는 A, B 2개의 피스톤으로 구성되어 있다. 즉 피스톤 A에서 공급되는 압축 공기는 특수하게 제작된 관로를 따라 몰체의 커버를 통과하여 B 피스톤의 한 쪽에 공급되므로 2배의 추력을 얻을 수 있으며, 이 2개의 피스톤은 회전축 중심으로 대칭으로 배열되어 있어 공간 효율이 극대화되어 있다.

2개의 피스톤에서 생성된 적선 운동은 할출 기구 중심에 위치한 피니언에 의하여 회전력으로 바뀌어 브로 연결된 내축축(Inner Shaft)에 동력이 전달되게 된다. 내축축과 턴 테이블(Turn Table) 사이에는 클러치 베어링이 위치하게 되며, 클러치 베어링의 역할은 한 쪽 방향으로 회전할 때에는 내축과 외륜의 구는 운동을 담당하는 물리가 테이퍼가 있는 리테이너(Retainer)에 감압하여 브레이크 역할을 하게 되어, 단속적인 단방향 회전력을 발생시키게 된다. FIG. 2.2에 개념도가 나와 있다.
원하는 회전 각도는 피스톤 A, B의 행정에 의해 결정되며, 이 두 개의 피스톤은 피나먼에 의하여 동기 운동을 하게 되므로 피스톤 A의 전진은 피나먼을 거쳐서 피스톤 B의 어축단에 설치된 스톱퍼(Stopper) B에 의해 제어되고 또한 피스톤 A의 후진은 스톱퍼 A에 의하여 제어된다. 그러므로 2개의 스톱퍼 만으로 피스톤의 행정 기리 즉 회전 각도는 쉽게 제어가 가능하다. 그러나 원하는 회전각은 스톱퍼의 미세 조정 만으로는 정확한 선태가 불가능하며, 클러치 베어링의 무 부하시의 손실(Slip) 현상도 무시할 수가 없으므로, 일종의 독크(Dock) 장치를 부착하여 부하 구동시에는 위치 결정으로 활용하고 무부하 구동시에는 브레이크 역할을 할 수 있게 함으로써 정확한 회전각을 얻을 수 있으며 Fig. 2.3과 같다. 그림 상으로는 독킹 실린더(Docking Cylinder)의 끝단이 원형으로 되어 있으나 실제로는 평기 형상을 하고 있어야 정확한 회전각을 얻을 수 있다.

Fig. 2.3 Position Setting
전체적인 형상은 Fig. 2.4와 같다.

Fig. 2.4 Composite Drawing

3. 구성 부품의 제조과 특성

구성 부품의 기능과 용도를 고려한 제조과 특성을 요약하면 다음과 같다.

3.1 원자재

Table 1에 원자재의 품명, 재질, 규격과 수량 및 처리 절차를 정리하였다.
작동 시험은 저압 시험과 고압 시험으로 나눌 수 있으며, 저압 시험이란 정, 동작 정의를 이기고 운동이 이루어지는 최소의 압력을 기기에 공급하여 이때의 동작 상태를 체크하기로 가공 정도, 조립 상태 등을 검사하는 방법이다. 고압 시험은 일반적인 공압 사용 압력을 초과하여 9kg/cm²의 공압을 공급하여 취부된 쿠션의 완충 역할 및 볼트의 풀림 상태, 부분 의 초기 마모, 공기의 누출 등을 검사하는 방법이다.

4.1.1 저압 시험

던전에너블에 펜치홀을 가공한 부속 장치를 제작 부착하고 토오폴 펜치를 사용하여 초기 동작이 이루어질 수 있는 최저 공기압을 검사하며 이때의 압력은 0.5kg/cm² 이내이어야 한다.

저압 시험은 압력 채워지를 조절하여 1kg/cm²의 공압이 공급되는 조건에서 동작 상태를 옥안 검사하도록 한다. 이때 동작은 연속적으로 정상한 상태에서 이루어 지도록 하며 저압에서 피스톤에 의한 동작을 확인한 후에 고압 상태에서의 동작을 비교한다. 저압과 고압상태의 동작의 변화는 완충함을 담당하는 쿠션 개질의 품상에 의한 것이며 이때의 범위는 0.05mm를 초과하지 않아야 한다.

4.1.2 고압 시험

9kg/cm²의 공기를 공급하여 다음과 같은 여러 항목을 검사한다.
- 공기의 누설여부는 오일을 도포한 후 기포의 발생 유무를 1차적으로 검사한다.
- 정밀한 누설 여부의 검사는 오일 �.erase에 1m 이상의 깊이에 제품을 점착시켜 1000회 이상의 동작시험을 실시한 후 공기 누출, 오일의 양이 부분을 검사한다. 이때 점착된 제품 상부의 오일 유면 아래에 발생되는 기포를 수집할 수 있는 투명 용기를 설치하며, 이 투명 용기는 논문을 표시하여 누출된 공기의 양을 측정한다. 또한 이때 오일의 압력에 영향을 받지 않기 위해서는 유면 바로 아래에 용기가 위치하여야 하며 누출된 공기의 양은 공기 소비량의 1/1000이나 정해야 한다.

검사 결과 조정된 공기의 양은 0.1ℓ로 공기의 누출 성능은 합격하였다.
위의 그래프를 분석해 보면, 100번 이내의 초기 동작시에는 공기의 누출량이 비례적 급격사를 이루고 있으나 이는 공기 배관 주변과 제품에 붙여있던 공기가 충격이나 진동 등에 의해 분리된 것으로 해석할 수 있다.

4.2 내압 시험

4.1 항의 고압 시험과 더불어 전공도 600mmHg 이상의 밀폐된 공간에 제품을 넣고 100회 이상 동작 시험을 한다. 또한 대기압 하에서 제품 내부에 진공 호스를 연결하여 배압 동작을 100회 이상 실시한다. 이때에는 봉입된 윤활제의 외부 누출 여부 및 각종 폐기의 변형 여부를 검사한다.

4.3 온도 시험

공기압 실린더의 온도 조건은 실 제료의 온도 조건에 의해 결정되어진다. 사용 온도 조건은 -30 °C ~ 120 °C로 규정되어 있으며 특수한 제조를 사용할 때에는 -55 °C ~ 200 °C까지도 가능한 한계조건이나 통상적으로 -10 °C ~ 80 °C에서 사용하는 것이 보편적이다.

온도의 변화에 따른 봉입된 윤활제의화학적 변화와 점도 변화는 통상 온도에서 제품의 성능에 미치는 영향이 작으므로 특수한 환경을 제외하고는 고려의 대상이 아니다.

단열재로 외부의 온도와 차단된 철거를 만들어 제품을 막고 전열선을 사용하여 내부의 온도를 상하, 좌우 4지점에서 동시 측정하여 80 ± 5 °C 이내로 유지되게 한 다음 1000회 동작시험을 한다. 동작상태등을 점검후 24시간후에 실재료의 변형과 윤활제의 점성 등을 확인한다.

4.4 회전 추력 시험

이론상의 회전 추력은 피스톤의 단면적 X 공급압력 X 피스톤과 피니언 축과의 중심거리 가 되므로 5kg/cm²의 공기압이 공급될 때 제품의 저수에 작용하여 보인 155.5kg-cm가 된다. 탄데이블의 취부용 텐에 회전용 압을 제작하여 이 압의 거리는 10cm가 되게 한다. 압의 결정지는 설치된 로드셋과 접촉시 수직을 이루도록 현지구조를 제작한다. 공기의 압력은 1kg/cm²에서 9kg/cm²까지 단계적으로 변환시키고 이때에도 로드셋에 기록된 험을 측정한다.

4.5 분할 정지 정밀도 시험

저압에서 100번의 동작 시험을 한 후 피스톤에 의한 행정거리로 5회 측정하여 평균을 산출한 후 다시 100번의 동작 시험 후에 행정거리로 5회 측정하여 평균을 산출한다. 공급압력은 5kg/cm²으로 상승시켜 1000번의 동작 시험후 행정거리로 5회 측정하여 평균을 산출한다. 고압에서 1000번의 동작 시험후
그래프의 자료를 분석해 보면, 고압일때는 충격에 의한 스트로크의 변화가 많은 기복을 갖고 있었고, 저압에서는 산포도가 일정하여 정밀도의 관련 요소가 충격력임을 알 수 있다. 그림에도 스트로크의 반복 정밀도가 0.02m/m이내인 점은 제품의 안정화를 나타내는 척도가 된다.

5. 문제점 및 결론

본 연구에서는 2개의 피스톤을 사용하여 특수하게 제작된 관로를 따라 압축 공기를 진달하여 추력 응력시킬 수 있는 방법을 제안해 개발하였으며 이를 인테그레이션에 적용하였다. 또한 제작된 프로토타입에 대해서 여러 가지 검사를 행하였다. 개발시 나타난 몇 가지 문제점들은 다음과 같다.

1) 현재 국내 공업 제품에 대한 표준화가 이루어지지 않아 검사 기준이 정립되어 있지 않아 대부분의 검사 기준은 국내 제작업체의 자가 검사 기준과 외국 제품의 카다로그에 의존해 왔다.
2) 시제품 제작 시 이에 요구되는 특수한 성상의 제품이 필요하다거나 기계공정을 제한한 사출 부품은 원하는 제품을 얻을 수 없어 원하는 성과를 얻기 어렵고 미흡함이 많았다.
3) 드크 실린더의 로드에 표면 관공정상이 발생하였으며 이는 정위치 섬유상에 무리한 충돌을 받은 것으로 추정되어 이에 대해 실린더 로드에 별도의 충돌방지 장치 제작을 고려하고 있다.
4) 고속 운전시 터너플러에 적재된 물체의 관성으로 인한 피스톤과 실린더 사이에 급속 충격음이 발생하여 발생한 결과 충격방지용 스폴로의 구단에 취부된

우려된 엔진에 무리한 충격이 가해졌음을 확인할 수 있었으며 이 스폴로 자체에 유압 충격완충기를 취부 검토중이며 나사상자에 기밀을 유지할 수 있는 특수한 폐킹의 개발이 요구된다.