이동 컴퓨팅 환경에서 효율적인 단절 연산을 위한 선택된 메카니즘

Chang Ho Choi, Myung Il Kim, Sang Soo Park, Sung Joon Kim
Dept. of Computer Science & Engineering, Chung-Ang University
Institute for Defense Information Systems

요약
이동 컴퓨팅 환경에서 이동 호스트는 무선망을 통해 서버와 연결된 후에야 데이터를 획득 및 처리할 수 있다. 그러나 이동 호스트는 낮은 대역폭과 이로 인한 지연, 그리고 네트워크 단절(disconnection) 문제로 무선망의 특성으로 인해 사용자와 많은 결연화에 비효율성이 발생하고 있는 실정이다. 특히, 이동 호스트에 네트워크 단절이 일어나면 접속이 끊기고 하용에 필요한 데이터가 개

수 없을 경우에는 작업 처리가 불가능하다. 본 논문에서는 이에 대한 문제점을 해결하기 위하여 이동 호스트의 이동에 따른 데이터를 빠르게 인체해보는 서버에 저장된 메커니즘을 제시하였다. 본 논문의 선택된 메커니즘은 가금, 분석기, 선택된 목록 생성기, 그리고 비교기로 구성되어 있다. 기록적 분석하기에 이동 호스트의 파일 참조 패턴을 기반으로 프로파일을 생성하며, 선택된 목록은 비

해에 사용된 파일들의 특성을 생성하며, 비교기는 선택된 패턴을 서버에 주기적으로 요청하는 역할을 한다. 마지막으로, 본 논문은 선택된 메커니즘의 성능 검증을 최초화하기 위해 선택된 파일을 자바 로드 테스트를 통한 선택된 메커니즘을 제시하였다.

1. 서론

최근, 컴퓨터 사용 분야가 향방위해지면서 정보 처리 대상 업무가 증가하고 있다. 특히 개인 활동 영역이 확대되면서 자신

의 사무실 및 일의 방만한 환경에서 업무를 처리해야 할 경우가 점차 증가하고 있다. 따라서, 소형화-장착된 하드웨어의 유무

선 통신 기술을 통합하여 시스템을 융합적으로 취급해야 필수

적으로, 업무를 처리할 수 있는 이동 컴퓨팅(mobile

computing) 개념이 확대되고 있다(Foza94). 이와 같은 이동 컴퓨팅

이 설계되면서 저장하고 생성되는 유무선망과 사용자가 휴대

하기 편리한 단말기 개발이 진행되어 왔다. 그러나, 유선망은

지역적 한계성의 단점이 있으며, 무선망은 고가의 무선국 확장

비용과 가변적인 대역폭으로 인해 안정적인 데이터 전송을 기대

하기 어렵다. 특히, 무선망의 낮은 대역폭과 이로 인한 결

연, 네트워크의 단절, 그리고 제한적 데이터 저장량 등은 이동 컴퓨팅

환경의 특성을 가져다 줄 수 있다.

이동 컴퓨팅의 특징인 무선 통신으로 인해 이동 호스트의 서버

에 대한 접속이 단절되기 쉽다. 이에, 절단된 데이터를 서버에 재전송

하지 못할 경우 이동 호스트는 작업을 처리할 수 없다. 따라서, 이동 컴퓨팅은 이동 호스트가 서버와 단절되어도 작업

을 처리할 수 있는 단절 연산(disconnected operation)이 필요하

다(GA96)[K93][K97]. 이를 위해 이동 호스트는 서버와 단절

되자 즉시 데이터를 서버로 전송하고 서버에 저장

하는 선택(non-preallocating) 작업이 필요하다.

본 논문의 구성은 다음과 같다. 2장에서는 선택된 메커니즘

에 대한 관련 연구를 살펴보고, 3장에서는 본 논문에서 제시한

선택된 메커니즘을 기술한다. 마지막으로 4장에서는 실험과 향

후 연구 방향에 대해 논의한다.

2. 관련 연구

1) 본 연구는 한국과학재단 특정기초연구비(961-0100-001-2) 지

원으로 수행되었으며 지원에 감사드립니다.

(그림 1) 선택된 메커니즘의 동작 과정
(표 1)은 클라이언트에서 저장하는 신청안 메가난즈의 파일목록을 나타내며, 이 메가난즈의 구성 요소의 기능은 다음과 같다.

- 기록기: 클라이언트가 참조한 파일을 로그(log)에 기록한다. 이 로그는 클라이언트가 참조한 파일 명령어나 아니어 파일을 사용한 기간도 기록한다.
- 분석기: 기록기에 저장된 클라이언트의 파일 참조 파일목록을 기반으로 프로파일을 생성한다. 이 프로파일은 주기적으로 생성된다.
- 신청유무 생성기: 클라이언트가 현재 사용하고 있는 작업 파일을 기반으로하여 이에 사용될 파일과의 목적을 생성한다.
- 비교기: 클라이언트가 신청한 파일을 선택하면 비교기의 이 파일이 현재 신청중인 파일과 일치하는지 검사하고, 만약 일치하면 그 버퍼에 이 파일을 저장한다.

3.1 분석기

분석기는 우리가 제한한 신청안 메가난즈의 핵심 요소인 프로파일을 생성한다. 클라이언트는 자신의 프로파일을 갖고 있으며, 이 프로파일을 이용하여 신청한 파일을 선택할 수 있다. 프로파일은 다음 표 1과 같은 테이블로 구성되며, 각 필드의 역할은 다음과 같다.

표 1 프로파일 필드

<table>
<thead>
<tr>
<th>파일명</th>
<th>다음 참조 파일</th>
<th>참조 횟수</th>
<th>최근 참조 파일</th>
<th>동시 시간동안 참조</th>
</tr>
</thead>
</table>
- 파일명: 클라이언트는 특정 파일 사용후 인출된 파일목록을 알고 있어 프로파일의 파일목록을 키워드로 하여 신청한 파일목록을 확대할 수 있다. 이와 같이 "文件명" 필드는 신청한 파일목록을 나타낸다.
- 다음 참조 파일: "文件명" 필드가 가리키는 파일의 참조 횟수를 나타낸다.
- 참조 횟수: 클라이언트가 "文件명" 필드를 가지고 있는 파일목록의 참조 횟수를 나타낸다. 클라이언트가 다음 파일목록을 참조할 때마다 해당 필드의 "참조 횟수"는 1씩 증가한다.
- 최근 참조 파일: 클라이언트가 "文件명" 필드를 가지고 있는 파일목록의 참조 횟수를 나타낸다.
- 동시 시간동면 참조: 클라이언트가 "文件명" 필드를 가지고 있는 파일목록의 참조 횟수를 나타낸다. 클라이언트가 "文件명" 필드를 가지고 있는 파일목록의 참조 횟수를 나타낸다.

표 2 프로파일 예

<table>
<thead>
<tr>
<th>파일명</th>
<th>다음 참조 파일</th>
<th>참조 횟수</th>
<th>최근 참조 파일</th>
<th>동시 시간동면 참조</th>
</tr>
</thead>
</table>
- W | A | 57 | ○ |
- J | I | 5 | ○ |
- | | | |
- A | B | 50 | ○ |
- C | D | 12 | ○ |
- X | K | 25 | ○ |
- Y | Z | 20 | ○ |
- | | | |
- P | 2 | ○ |

또한, (표 2)에서 클라이언트는 바로 그 참조에서 파일 B를 참조한 후 파일 Y를 사용한 것을 알 수 있으며, 파일 X 대신 파일 Y를 선택한다. 파일 Y를 선택한 후 파일 B가 참조된 것에서 제외된다. 이와 같이, 클라이언트는 신청한 목록 생성기를 통해 파일 B를 참조한 후 파일 Y가 선택된 것을 확인할 수 있다. 이 목록은 신청시 클라이언트를 저장하고 있는 prefetch_FIFO에 저장된다. 단, 선택된 클라이언트를 prefetch_FIFO에 입력하기 전에 이 파일이 캐시에 있는지 확인하려면 다음을 비교할 수 있다. 이 목록은 신청시 클라이언트를 저장하고 있는 prefetch_FIFO에 입력된다.
비교기

비교기는 신신출입 판독 신인출입 판독을 정지하기 위해 먼저 캐시의 공간

(1) 비교기
(2) 비교기는 신신출입 판독 역할
(3) 비교기는 신신출입 판독

4. 결론

본 논문에서는 이동 호스트에 효율적인 단절 연산을 제공하기 위해 프로미우스를 활용한 신신출입 판독을 제시하였다. 이 판독은 기존의 신신출입 판독과 달리 신신출입 판독의 제한 사항을 극복하였다.

References

