인터넷상의 공용 NTP 서버 동기화 특성 분석

오지석, 성순용*, 김영호
부산대학교 전자기계공학과, *부산외국어대학교 컴퓨터공학과

An Synchronization Characteristics Analysis of Public NTP Servers in Internet

Jisok Oh, Soonyong Seong*, Youngho Kim
Dept. of Computer Science, Pusan National Univ;
*Dept. of Computer Engineering, Pusan Univ. of Foreign Studies

요 약

본 논문에서는 공용 접근이 가능한 NTP 서버들에 대한 동기화 특성을 조사, 분석한 결과, 본 연구 주요 항목은 서버 신뢰도, 정확도 그리고 오프셋(Offset)과 검증 이론의 관계이다. 이 연구를 위한 NTP 알고리즘과의 적용 시각을 위해 설계된 패널 공신, 실제 실험을 통해 자료를 수집하였다. 본 연구 결과, 오에의 여러 측면에서 특성을 보였으며, 이는 오에의 오프셋 값의 단순 연속이 오류가 각 세포를 이용하여 보증되었다. 본 논문에서 상기된 NTP 서버 동기화 특성을 통한 NTP 서버의 조건을 갖춘의 논의는 유용하게 쓰일 수 있다.

1. 서론

서버 동기는 서버 동기를 요구하는 클라이언트에서 서버 동기를 제공하는 서버의 서버를 얻는 것을 기준으로 한다. 이것은 원도에서 어느 정도 오차 값을 가진다는 것을 점검하는 것을 이는 것이다. 이러한 오차의 발생은 여러 가지 요인이 있지만 주로 서버 소프트웨어의 사용에 소요되는 예측할 수 없이는 서버 자체에 따른다. 본 논문은 인터넷상의 서버 동기화 알고리즘을 개발한 NTP 서버들에 대해 동기화 특성을 조사, 분석하였다. 본 논문은 NTP 알고리즘의 적용사항이 가능한 NTP 서버들에 대해 동기화 특성을 조사, 분석하였다. 본 논문은 NTP 알고리즘의 적용사항이 가능한 NTP 서버들에 대해 동기화 특성을 조사, 분석하였다.

2. NTP 및 NTP 서버

2.1. NTP

![그림 1 Network Time Protocol의 구조]

NTP의 특징으로, LAN(Local Area Network)상에서 시간을 제공하기 위한 여러 프로토콜들 - DAYTIME 프로토콜(POSIX8), TIME 프로토콜(POSIX8), ICMP Timestamp message(DEF81) 그리고 IP Timestamp option(SUZ81)등이 있다. 하지만 이런 프로토콜의 대부분은 WAN(Wide Area Network)상의 환경에서 발생하는 동기화 시각 높이 분산의 효과를 보장하는 방법을 포함하고 있지 않고, 더욱이 여러 오류 요인에 의한 신뢰할 수 없는 인터넷을 통한 정확한 시간 제공에는 적합하지 않다.
2.2. NTP 서버

특성 논의 서버는 제안에서 동작하는 중복 NTP 서버들 중 6개를 선택함으로써 our NTP와 같이 UDP를 사용하는 PING 프로그램을 통해 전송 시간 비교에 의해 전송 주소가 수 밀 ms에 이르는 서버들을 선택하고 이중에서 분석에 적합한 서버를 찾기 위해 하루 평균 전송 시간을 재구성하는, 상대적으로 많은 분석 자료를 제공하고, 그리고 참조하는 끝에 원칙. 따라서 그로 서버의 징계를 달리 하는 서버들을 선택했다. [표1]는 분석 대상이 되는 서버들로 서버 이름, IP 주소, 위, 동기성 및 그리고 서버의 징계를 나타낸 것이다.

[표1] 분석 대상 서버 목록

<table>
<thead>
<tr>
<th>서버명</th>
<th>국문</th>
<th>영문</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canon</td>
<td>DRLA, Roquecourte, France</td>
<td>TDF, KENERAT, France</td>
</tr>
<tr>
<td>Clock</td>
<td>Fukuroku university, Fukuroku, Japan</td>
<td>GPS, Japanese/Photic area</td>
</tr>
<tr>
<td>Ntpd</td>
<td>Delmarva Power & Light Co., Newark, DE</td>
<td>US Naval Observatory, Washington, DC</td>
</tr>
<tr>
<td>Ntpd</td>
<td>US Naval Observatory, Washington, DC</td>
<td>USNO, NSFINET</td>
</tr>
<tr>
<td>Tock</td>
<td>NIST Central Computer Facility, Boulder, USA</td>
<td>ACIS, NSFINET, SURANET</td>
</tr>
<tr>
<td>Time</td>
<td>NTP Central Computer Facility, Boulder, USA</td>
<td>ACIS, NSFINET, SURANET</td>
</tr>
</tbody>
</table>

2.3. 동기화 특성 사항

분석은 NTP 동기화 방식에서 최고 상위에 해당하는 개수 1로 동작하는 서버 동기화 특성 또한 적절한 개수를 결정하며, 그 결과에서 알아보는 자료를 사용함으로써 분 석 업무 및 방법론을 이해하기도 한다.

1. 서버의 신뢰성과 정확성: NTP의 클럭 밸런스 알고리즘에 서 사용하는 방법에 따르면 가장 많은 신뢰도는 가장 높은 제한과 동기화 결과가 지연 서버의 신뢰성에 의해 이루어진다. 또한, 가장 높은 정확도는 가장 높은 제한과 분산을 지니는 서버의 선택으로 이루어진다. 따라서 NTP 서버의 신뢰도와 정확도를 향상하기 위해서 각 서버들의 동기화 결과와 분석을 각각 살펴보고, 서버들의 동기화 결과를 비교한다.

2. 서버와 전송 거리 분포: NTP의 벤더의 동기화에 서서서 서버의 클라우드선언에 주목 한다. 여러 개의 서버 소스 중 서버의 클라우드선언의 서버 정보 오류를 정확하게 갱신하기 위해 전송 서버가 가장 높은 밸런스를 선택하고 이를 고안되어야한다. 하지만, 이러한 결과를 얻은 경우와 다른 경우에는 서버의 클라우드선언의 오프셋과 전송 거리가 적절한 분포로 존재하는 이 두 항목간의 관계를 갖은 형태의 그래프를 통해 살펴보고 비교한다.

3. 동기화 특성 분석

3.1. 서버의 신뢰성과 정확성

[표2]는 각 서버별로 측정이란 동기화 결과는 분자인 누락된 폭과 근소한 10일간의 폭이 폭을 가장 큰 폭과 가장 작은 폭 그리고 10일 전체의 폭을 구한 것이다. 분석 결과에서 구한 폭과 폭은 서버의 신뢰도측정에서는 Ntpd서버가 가장 높다고, Ntpd 서버가 가장 낮게 나타날 것을 알 수 있다. 그리고 정확도측정에서 보는 Ntpd 서버와 Ntpd 서버가 가장 낮게 나타날 것을 알 수 있다. 서버의 신뢰도측정, 정확도측정에 대한 가중치는 11이라 고 생각한다면 분석 대상 서버 중 Ntpd 서버가 종합적으 로 가장 낮은 서버임을 알 수 있다.

3.2. 오프셋과 전송 거리 분석

[표3]는 완벽 대상들이 있는 NTP 서버들에 대한 HOP수, 전송 거리의 평균 그리고 오프셋의 평균을 나타낸 것이다. [표4]에서 보는 서버별로 중간값의 차이는 있었지만, 전송 거리의 경우는 평균적으로 0.00에서 0.50ms 내에서 유지되었고, 오프셋의 경우는 평균적으로 80ms이내로 나타났다.
4. 결론 및 향후 계획

본 논문에서 분석한 바에 의하면, 공용 NTP 서버의 성능을 평가할 수 있는 도구가 거의 없는 비해에 있어서는 최대 700ms 정도의 차이가 높으며, 정확성을 위한 필수는 분산 네트워크의 비교적 높은 최대 30ms 정도의 차이가 냈다. 이러한 결과들은 수십 ms 정도의 성능의 도구와 효과를 가졌으며, WAN의 상호작용을 둔 영향을 미칠 수 있는 요인이 있다. 그리고 NTP의 품질 품질과 성능의 차이를 분산 서버와 옵션 설정에 의한 내용은 웹진지 크기나 슬라이딩 윈도우의 보장 등의 설정을 통해 설정되어야 할지 여부에 대해서는 아직 논의되지 않았다.

앞으로 본 논문의 한점을 몇 가지 고안해 보았다. 우선 NTP 서버들에 대한 구체적 연구였지만 앞으로 장기적인 관측과 여러 환경의 서버에 대한 조사와 통해 더욱 많은 자료가 더욱 많은 서버에 대해서 분석이 이루어지면 보다 정확한 결과를 얻을 수 있을 것이라 생각한다.

참고문헌