Title: An Improvement of the Convergence Speed through Tap Weight Updating of Data-Recycling LMS Algorithm

Authors: Won-Kyun Kim*, Kwang-Jan Kim*, Sang-Dong Na*

Affiliation: Department of Eng., Chosun Univ.
E-mail: sdna@mail.chosun.ac.kr

Abstract:
In this paper, a new simple and efficient technique to improve the convergence speed of LMS algorithm is introduced. The convergence characteristics of the proposed algorithm, whose coefficients are multiplied adaptively in a symbol time period by recycling the received data, are analyzed to prove theoretically the improvement of convergence speed. The theoretical analysis shows that the data-recycling LMS technique can increase convergence speed by (B+1) times, where B is the number of recycled data. The results of the computer simulation demonstrate that the simulation results are in accordance with the theoretical analysis and the superiority of the filter algorithm.

1. Introduction

Recent advances in digital signal processing have led to the development of new signal processing techniques, which have found applications in various fields such as communications, control systems, and biomedical engineering. One of the most widely used techniques in this area is the Least Mean Squares (LMS) algorithm, which is a stochastic gradient descent method for adaptive filter design. The LMS algorithm is simple, computationally efficient, and can be easily implemented in real-time systems. However, the convergence speed of the LMS algorithm can be slow, especially in high-speed systems.

In this paper, we propose a new simple and efficient technique to improve the convergence speed of the LMS algorithm. The proposed technique is based on data-recycling, which involves reusing the past received data to update the filter coefficients. The theoretical analysis shows that the data-recycling LMS technique can increase the convergence speed by (B+1) times, where B is the number of recycled data. The results of the computer simulation demonstrate that the simulation results are in accordance with the theoretical analysis and the superiority of the filter algorithm.

2. Data Recycle LMS Algorithm

The LMS algorithm is used in a wide range of applications, such as echo cancellation, adaptive noise control, and system identification. However, the convergence speed of the LMS algorithm can be slow, especially in high-speed systems. To overcome this limitation, the data-recycling LMS algorithm is proposed.

The basic idea of the data-recycling LMS algorithm is to reuse the past received data to update the filter coefficients. This is achieved by multiplying the filter coefficients with the past received data before updating them. The new filter coefficients are then used to process the current input signal.

3. Computer Simulation

The proposed data-recycling LMS algorithm was simulated using a computer program. The simulation results show that the convergence speed of the data-recycling LMS algorithm is significantly faster than that of the conventional LMS algorithm. The results also demonstrate the superiority of the data-recycling LMS algorithm over other existing algorithms.

4. Conclusion

In conclusion, the data-recycling LMS algorithm is presented in this paper. The theoretical analysis shows that the data-recycling LMS algorithm can increase the convergence speed by (B+1) times, where B is the number of recycled data. The results of the computer simulation demonstrate that the simulation results are in accordance with the theoretical analysis and the superiority of the filter algorithm.

Appendix

Fig. 1: Block diagram of adaptive transversal filter

Fig. 2: Transversal filter structure

Table 1: Parameters of the data-recycling LMS algorithm

References

Theoretical analysis and computer simulation results are presented to demonstrate the effectiveness of the proposed data-recycling LMS algorithm. The results show that the data-recycling LMS algorithm is a promising technique for improving the convergence speed of adaptive filters in high-speed systems.
먼 다루는 식 (4)와 같다.
\[a_i n(w) = n(w) \cdot u(n-1) = w(n) \cdot u(n) \]
(4)

이에 정음 (a)는 요소들 식별 \(a_i \)와 합편 (시트) 속 편LIW \(m(1, w(n)) \)의

\[w(n) = u(n) + 2 \mu_s (\bar{r} \cdot w(n)) \]
(5)

\[a_i \] 가구들의 분산을 취할 때 단말 면 인기 편LIW \(w(n) \)을 이용할 수 있다. 또한, 면 인기 편LIW \(w(n) \)에 중인, 몇몇 영역이 제어된 벽 인기 면LIW \(u(n-1), u(n-2), u(n-3) \)을 이용할 수 있다. 면 인기 벽의

\[E[w(n+1)] = E[w(n)] + 2 \mu_s \sum_j E[d(n-1)M]R \]
(8)

\[- R \cdot E[w(n)] \]

\[E[w(n+1)] = E[w(n)] + 2 \mu_s \sum_j E[d(n-1)M]R \]
(9)

\[\mu_s \] 의 수학방정식을 가정할 경우, 식 (10)을 이용하여 면 인기 벽의 면LIW \(w(n) \)과 두 않음으로 식 (11) 또는 식 (12) 간의 수학방정식이 있다.

\[E[w(n+1)] = E[w(n)] - 2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]
(10)

\[2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]

\[\mu_s \] 의 수학방정식을 가정할 경우, 식 (10)을 이용하여 면 인기 벽의 면LIW \(w(n) \)과 두 않음으로 식 (11) 또는 식 (12) 간의 수학방정식이 있다.

\[E[w(n+1)] = E[w(n)] - 2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]
(11)

\[2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]

\[\mu_s \] 의 수학방정식을 가정할 경우, 식 (10)을 이용하여 면 인기 벽의 면LIW \(w(n) \)과 두 않음으로 식 (11) 또는 식 (12) 간의 수학방정식이 있다.

\[E[w(n+1)] = E[w(n)] - 2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]
(12)

\[2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]

\[\mu_s \] 의 수학방정식을 가정할 경우, 식 (10)을 이용하여 면 인기 벽의 면LIW \(w(n) \)과 두 않음으로 식 (11) 또는 식 (12) 간의 수학방정식이 있다.

\[E[w(n+1)] = E[w(n)] - 2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]
(13)

\[2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]

\[\mu_s \] 의 수학방정식을 가정할 경우, 식 (10)을 이용하여 면 인기 벽의 면LIW \(w(n) \)과 두 않음으로 식 (11) 또는 식 (12) 간의 수학방정식이 있다.

\[E[w(n+1)] = E[w(n)] - 2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]
(14)

\[2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]

\[\mu_s \] 의 수학방정식을 가정할 경우, 식 (10)을 이용하여 면 인기 벽의 면LIW \(w(n) \)과 두 않음으로 식 (11) 또는 식 (12) 간의 수학방정식이 있다.

\[E[w(n+1)] = E[w(n)] - 2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]
(15)

\[2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]

\[\mu_s \] 의 수학방정식을 가정할 경우, 식 (10)을 이용하여 면 인기 벽의 면LIW \(w(n) \)과 두 않음으로 식 (11) 또는 식 (12) 간의 수학방정식이 있다.

\[E[w(n+1)] = E[w(n)] - 2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]
(16)

\[2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]

\[\mu_s \] 의 수학방정식을 가정할 경우, 식 (10)을 이용하여 면 인기 벽의 면LIW \(w(n) \)과 두 않음으로 식 (11) 또는 식 (12) 간의 수학방정식이 있다.

\[E[w(n+1)] = E[w(n)] - 2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]
(17)

\[2 \mu_s \sum_j E[d(n-1)M]R(1 - \mu_s) \]

\[\mu_s \] 의 수학방정식을 가정할 경우, 식 (10)을 이용하여 면 인기 벽의 면LIW \(w(n) \)과 두 않음으로 식 (11) 또는 식 (12) 간의 수학방정식이 있다.
의 크기가 0에 가까운 경우, 이자를 이용한 임차해석 심화법으로서 스냅 코기
\(\mu \)의 표준차에 의해 이용된 수치를 나타내므로 스냅 코기의
변수 \(\mu \) 가 높을수록 정확도 수렴특성 이 간단적으로 정의될 수 있다.

\[H(Z) = 0.25 + 0.95Z^{-1} + 0.26Z^{-2} \quad \ldots \quad (22) \]

그림 5에서 나타낸 심화법 결과는 적당 횡단편 및 가중치 개수를 11개로, 12개의 라인에 표시하거나 적절한 수의 표본 사이즈 파라미터 \(\mu \) 는 0.5로, 0.95로 표시한다. 이 경우의 수는 원래의 LMS 알고리즘 (B=8)과 각각의 다른 조건을 지닌 임차해석의 수렴특성을 나타내고 있다. LMS 알고리즘의 평균에 의해 적절한 수의 조건은 적절한 횡단편 개수를 이용하여 수렴도 조정할 필요가 요구된다.

고체는 간격적으로 산입되는 2.5배 방어의 오류가 줄어든 수렴 특성 curve 이면, 그림 5와 같은 두 가지 곡선이 1000개의 표본에 이르는
바로 그림 5과 같은 두 가지 곡선이 1000개의 표본에 이르는
복잡이 발생하는 것을 보이지 않는다. B=5, B=8의 곡선은 각각 80, 55개의 표본에 이르는 것을 보인다. 이러한 결과는 적절한 알고리즘의
수의 개수가 적절한 수에 (B=1)에 관련되어 있는 것
을 나타낸다. 임차해석의 간설로는 심화법의 결과들이
개선된 알고리즘의 이론적 분석에 부합한다고 생각된다.

참고문헌