RpoS Regulated Aerobiosis and Anaerobiosis in Virulent *Salmonella typhimurium*

Kyoung Me Lee, Ju Ri Jung, Dong Woo Kim, Sang Kyun Koh¹, Yong Keun Park², and In Soo Lee³
Department of Microbiology, Han Nam University
Department of Microbiology, Taejon University¹
Graduate School of Biotechnology, Korea University³

*Salmonella,* as well as many other bacterial pathogens, encounter a wide variety of physiological stresses during their life cycle. These include ultraviolet light, starvation, shifts between aerobic and anaerobic conditions, heat shock, oxidative stress, and fluctuations in external pH. Many of the defense mechanisms that *Salmonella/E.coli* use to protect themselves from environmental perturbations have been studied in some detail at the biochemical, genetic and molecular levels. Recently, we found a facultative-inducible gene (*aniA1*:MudJ) using the P22 mediated MudJ(*lacZ, Km*) operon fusion technique. The *aniA1-lacZ* was only expressed by anaerobic condition. In addition, *lacZ* activity of this mutant in pH5.8 was showed 5 times higher than in pH7.7. Also, *aniA1-lacZ* on RpoS negative background was expressed in aerobic condition. This result suggested that *rpoS* was negatively regulator for *aniA1* in aerobic condition. Therefore, *rpoS* was suggested important putative sigma factor for switching mechanism between aerobiosis and anaerobiosis.

Catalase and Catalase-peroxidase from *Streptomyces seoulensis*

Chang Jin Lee* and Sa-Cuk Kang
Department of Microbiology, College of Natural Sciences, and Research Center for Molecular Microbiology, Seoul National University

In the course of differentiation, *S. seoulensis* expressed one substrate mycelium-specific catalase and one aerial mycelium-specific catalase. Two types of catalase-peroxidase were detected during the surface culture: one was active in substrate mycelium, the other one was active in the sporulation stage. However, in the stage of the formation of aerial mycelium both types of catalase-peroxidase were present. Genomic southern analysis revealed that *S. seoulensis* contained one homologue of *catC* gene of *S. coelicolor*. On the other hand, the homologues of *catA* and *catB* encoding substrate mycelium-specific catalase and aerial mycelium-specific catalase were not detected. Approximately 2.4 kb DNA fragment containing the homologue of the *catC* gene of *S. coelicolor* A3(2) M145, which encodes catalase-peroxidase was isolated from λEMBL3 genomic library of *S. seoulensis* using a DNA fragment PCR-amplified *catC* gene of *S. coelicolor*. The result of BLAST search showed that cloned sequence have the highest homology with *catGII* encoding catalase-peroxidase from *Mycobacterium tuberculosis*.