WWW에서의 한국어 표준 음가생성 시스템 구현

임재철 이계영 남중구
동국대학교 컴퓨터학과

An Implementation of A Korean Standard Pongetic Value Generating System

Jaegol Yim Gyeyoung Lee Joonggook Nam
Dept of Computer Science, Dong-guk University
{yim, leegy, junggu}@wonhyo.dongguk.ac.kr

요 약

본 시스템은 한글 발음 교육 사이트 개발 프로젝트의 일부인 음가 생성에 관한 컴퓨터로써 한국어 표준발음 데이터에서 음을 변동값을 추출하고 해당 음성과 입모양을 출력하는 WWW상의 자바 응용 프로그램 개발에 관한 연구이다. 본 논문에서는 형태소 분석에 선행되어야 할 전처리 과정, 예외처리, 음가 생성부에서 고려하여야 할 점과, 시스템의 응용 및 구현 등에 대해 종합적으로 기술하였다.

1. 서론
문교부에서는 표준 발음법을 제정해 1998년 1월 19일 고시하였으며[1]. 그러나 그 조항이 복잡한 뿐만 아니라 중복되거나 충돌하는 향들이 있어 그것을 숙지하고 사용한다는 것은 어려운 일이다. 본 논문에서는 접근성이 용이한 WWW에서 사용할 수 있도록 JAVA 응용으로, 표준 음가를 생성하는 시스템을 구현하였다.

본 논문은 2장에서 기존의 연구 및 배경지식을, 3장에서 시스템의 설계와 구현을 소개하고, 4장에서 결론과 향후계제에 대해 설명한다.

2. 기존의 연구 및 배경지식
지금까지 if-else로 자모와 형태소를 비교해 음표연동을 처리하여 표준발음 음가를 생성시키고자 하는 연구가 있었다[3]. 이러한 방법은 많은 비교문을 사용하고 그 만큼 많은 프로그램 코드를 필요로 한다.

본 시스템에서는 행렬을 이용해 자모의 코드값을 인덱스로 하여 직접 변동값을 데이터에서 추출할 수 있도록 구현하였다.

3. 시스템의 설계 및 구현
본 시스템은 (그림 2)에서와 같이 전처리부, 예외 처리부, 형태소 분석기, 음가 생성부로 나누어진다. 또한 이 시스템은 한글 발음의 교육을 목적으로 만들어졌으며, 사용자의 입력처리, 형태소 분석, 음가 생성, 음성 및 동영상 출력뿐만 아니라 수많은 HTML문서와의 통신이 필요하게 된다. 이러한 모든 요소들을 처리할 수 있도록 웹상에서 동적인 프로그래밍이 가능한 Java를 시스템 구현에 이용하였고 SUN-SPARC상에서 JDK1.2를 사용하였다.

(그림 2) 전체 시스템의 구조

3.1. 전처리 과정
시스템의 입력단위는 문장으로써 전처리 과정에서 문장부호와 한글이 아닌 문자를 제거하고, 문장을 어절들

204
3.2 예외 처리부
표준 발음법에 있어서 예외 에도 해당하는 어
절에 대해서는 형태소 분석과정 없이 바로 음운변동의
결과를 얻어낼 수 있다. 예외로 처리되거나 예외로 포함
하는 조항은 표2와 같다. 26항과 29항은 형태소분석
이나 사전검색보다 예외로 처리하는 것이 효율적인 경우
이다. 26항의 처리를 위해 사전검색 방법을 선택할 경
우, 수 십만개에 해당하는 명사에 대해 한자어인지 아닌
지에 대한 정보를 가르도록 하려는 문제에 있다. 국어
사전을 통해 '그림'반점 통해 '도, 서, 수'에 연결되는 한자
어 829개를 예외사전에 수록하고 예외로 처리하였다.
28항은 '눈동자'와 같이 '눈의 동자'라는 판형적 기능을
가지는 복합어의 경우에도 이 조항의 처리를 위해서는
의미 분석의 단계를 거쳐야 하므로 예외로 처리하는 것
이 효율적이다.

3.3 형태소 분석
표준 발음법의 적용을 위한 형태소분석은 그 범위가 크
므로 볼도의 논문에서 다루기로 한다. 형태소 분석을
복합어에 대해서도 형태소단위로 분리하고 그 음절을
표준 발음법의 적용을 위해 필요한 정보인 음절화, 조사, 여간,
여기, 겔미사, 실형태소, 과부사동의 겔미사 '기', 사이
시모 등의 정보를 가지게 된다.

3.4 음성 생성부
음성 생성부에서는 규칙을 저장하고 있는 3차원 행렬을
탐색하게 되는데 표준 발음법의 조합들에 어떻게 정확하
고 포함적으로 태이블에 사용하면 어떻게 생성되었는지
에 대해 설명하는 별도의 논문에서 다루기로 한다.
표현 발음 태이블의 일부를 표3에 보여주는데 예외에
효과적인 탐색을 위해 모든 규칙을 저작권 시험 필요 없
이 한번에 태이블 탐색을 통해 음의 반점을 추출할 수
도록 설계되어 있다. 여기서 인덱스는 유니코드 한
글자의 부코드(subcode) 값에 대하여 음표들을 분리해
그것을 보다 태이블의 인덱스로 사용하고, 태이블에서
추출된 값들을 자료 조합을 통해 음표들로 쉽게 합성할
수 있는 이점이 있다.

태이블의 구조를 간략히 설명하면, 세로축은 종성의
코드값을, 가로축은 다음글자의 조성 코드값을 나타낸다.
가로축과 세로축이 만나는 각 셀에는 종성 및 다음글자의
조성이 반영된 웹의 음운변동 결과가 기록되어 있다.
이것을 표현하면 다음과 같이 나타낼 수 있다.
타이틀 = (rule[i][j][k] = 자음의 음가을 나타내는 부 코드 값)
(j=중성의 코드값, k=다음음절 초성의 코드값,
i= 0일때 : rule결과값은 변환된 중성의 코드값,
i= 1일때 : rule결과값은 변환된 다음 음절 초성의 코드값.)

중성의 변화값은 셀의 아래쪽에(i=0), 초성의 변화값은 셀의 위쪽(i=1)에 명시하였다. 즉, 2행 0열의 경우 중성 기는 그대로, 초성 기는 기로 변형을 의미한다.

<표 3> 표준발음법의 음운 변형을 표현한 3차원 백표표

| 초성 | 중성 | 중성 변화값 | 모음 | 모음 조합의 변화값 | 모음 중성 | 모음 병합 | 모음 조합비해결
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-11</td>
<td>-11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

예를 들어 '달다'의 경우 <표 3>에서 2행 3열에 해당하
는데 '달다'가 변환된 후 10행의 발음의 발음 규칙에
의해 중성 기는 대표를 만들고, 28행의 경우 변화 규칙에
의해 초성 기는 경음화 규칙으로 인한 것을 보
이고 있다. 즉 rule[0][2][3] = '의', rule[1][0][2][3] = '의'
다. <표3>은 테이블에서 쉽게 음운 변형값을 추출하는
의사코드를 보여준다.

<표 4> 테이블에서 음운 변형값을 추출하는 의사코드

```java
protected static int[] jamoConvert(int[] jamos){
  int jongung, chosung;
  int jongungPosition, chosungPosition;
  for(자보의 범위가 모두 처리될 때까지) {
    jamos[jongungPosition] = rule[0][jongung][chosung];
    jamos[chosungPosition] = rule[1][jongung][chosung];
  }
  return jamos;
}
```

이렇게 추출된 자보는 웅철들로 합성되고 그 음가에 해
당하는 동영상과 음성과정을 로딩해 출력한다.

3.5 실험결과

표준발음법의 조합에서 예로 제시한 예제 단어들을 이
용해 실험해 보았다. (그림 3) 실험의 일부로써 조합
들마다 하나씩 단어를 실험해 보았다. 본 실험은 넷
스케이프에서 실행한 것이고 나머지는 지원상 예습 및부
어에서 실행한 결과이다. 본 시스템의 발음교육 대상
이 유아이므로 초등학교 1학년에서 3학년까지의 교과서에
대해 실험한 결과 완전한 음운변동결과를 얻을 수 있었
다.

![그림 3 실험결과](image)

4. 결론

본 시스템은 한국 발음 교육 사이트 개발 프로젝트의
일부인 음가 생성에 관한 컨포넌트로서 한국어 표준발음
테이블에서 음운 변형값을 추출하고 해당 음성과 입모양
을 출력하는 WWW상의 자바 애플리언트 프로그램 개발에
관한 것으로써 표준발음법에 의해 정확한 음가를 생성할
수 있도록 구현하였다. 더욱 효율적인 발음교육을 위해
음운변동의 이유와 원리를 포함하는 것과 외국인이 학습
할 수 있도록 국제 발음 기호로 표기하는 등의 연구가
필요하다.

참고문헌

[3] 이계영, 음성 처리를 위한 한국어 자료 구성에 관한
연구, 1992