필기 숫자열 인식률 향상을 위한 초기 처리에 관한 연구 *

은성수○, 변영철, 김경환†, 최영우‡, 이일병
연세대학교 컴퓨터과학과, †서강대학교 전자공학과, ‡숙명여자대학교 전산과학과

Early Processings for an Improvement in Handwritten Digit String Recognition

Sungsoo Yoon, Yungcheol Byun, Gyeonghwan Kim†, Yeong-Woo Choi‡, Yillbyung Lee
Dept. of Computer Science, Yonsei Univ.
†Dept. of Electronic Engineering, Sogang Univ.
‡Dept. of Computer Science, Sookmyung Women's Univ.

요 약

필기 숫자열의 인식성능을 향상시키기 위해서는 필기 숫자열의 성능 개선도 필요하지만 인식기에서 필로하는 정보를 제공하려는 초기단계의 개선 역시 매우 중요하다. 남자하는 필기 숫자열 인식에서는 인식기에서 필요한 단위로 입력 데이터를 분할하려는 데, 장면, 기울임, 절차 등의 원인에 의해서 갈을 분할 해내기 어려워 퇴색을 한다. 본 논문에서는 이런 문제점들을 극복하기 위한 방법들은 제시하였으며 NIST 숫자열 데이터에 적용해 본 결과 16%의 성능 향상을 보였다.

1. 서론

실생활에 사용되는 필기 숫자열 인식하기 위해서는 우선 숫자 열을 인식기에서 주목할 수 있는 형태로 분할과번해야 한다. 사용하는 인식기에서 직접 숫자열을 처리하는 경우가 아니라면 이 과정은 반드시 필요할 뿐 아니라 인식결과에 영향을 미치게 된다. [1]에서와 같이 숫자열을 직접처리하는 경우를 제외하면 숫자열을 미리 정해진 단위로 분할해야 한다. 대부분의 경우 이 단위는 남자 숫자열이 되지만 다른 분할은 기존처리 방법으로 삼는 경우는 그렇지 않을 수도 있다[1]. 그러나 대분할 방법의 경우에도 역시 숫자열 사이를 분리하는 곳에 포함하고 있어야 한다. 인쇄문자와의 경우에는 동일적으로 크기로 거의 동일하기 때문에 분할 과정에 고려해야 할 요소가 많지 않지만 필기 숫자열의 경우에는 많은 변수가 작용한다. 우선 문자의 크기와 간격이 일정하지 않고 또한 문자가 기울어져 있는 경우가 많으며 심지어에는 인쇄한 문자가 결측하는 경우가 흔히 발생한다. 이런 상황에서 정확한 숫자열 사이를 분리해 내는 것은 쉽지 않다. 특히 입력 영상의 질이 좋지 않은 경우에는 더욱 고려해야 할 요소가 많아진다. 예를 들어 숫자열 내부에 몇 개의 숫자가 2~3개의 주요로 분리되어 있고 조각난 휘들리거나 이웃 숫자와 접촉되어 있다면 숫자열 간의 분리점을 찾기가 매우 어려워진다. 또한 두 개 이상의 숫자들간에 접촉이 일어날 수 있기 때문에 몇 개의 숫자가 결속되어 있는지에 대한 정보가 숫자들의 정확한 분할에 중요하게 된다.

본 논문에서는 필기 숫자열 인식률 향상에 필요한 초기 처리 방법들을 살펴보고 이런 방법들이 실제로 얼마나 도움이 되는지 실험을 통해서 살펴 보았다.

2. 필기 숫자열 인식률 향상에 도움이 되는 초기 처리과정들

만일 숫자열이 많은 작은 조각으로 나뉘어 있으면 각각의 남자에 대한 정보도 잃기고 잃으므로 오인하기에 중요한 정보를 잃어버릴 수도 있다. 그러므로 가능한 원래 영상을 보존하면서 조각난 숫자들을 풀어볼 필요가 있다. 필기 숫자열의 경우 필기자의 습관에 따라 기울어지는 경향을 보이고는 이런 경 우 화소수에 비해 남자의 복이 증가되어 다양한 필기자의 숫자열을 처리할 때 일관성을 보이는 처리가 근본적이다. 또한 분할과 정에서 각 부분이 숫자열을 처리하는 것 보다 바로써 숫자열을 나타내는 것이 사상적으로 용이하다. 숫자열의 경우 필기자의 습관에 따라서 차이는 있지만 대부분 하나의 화로 이루어져 있으나 4, 5, 7은 두 개의 화로 이루어지는 경우가 많다. 이 경우는 영상의 질과는 상관없이 흔히 나타나는 문제이기 때문에 두 화

* 본 연구는 정보통신연구진흥원의 지원으로 수행되었음을

455
이 하나의 숫자에 속한다는 정보를 주는 것은 인식에 더 더욱 중요한 요소로 작용한다. 폐기 숫자열의 경우 이웃한 숫자간에 접촉이 아니나는 경우가 자주 있으므로 점선으로 연결된 선을 하나의 숫자자리, 반면 그렇지 않다면 몇개의 숫자가 포함되어 있는지에 대한 정보는 분할과정에서 중요한 근거로 사용된다.

2.1. 조각난 영상 보정

메일어진 조각들을 잡기 위해서는 어느 정도 메일어진 조각까지를 이어붙일지를 결정해야 한다. 먼저 각각 포함시킨다면 이웃한 문자와 근접한 확까지 이길 워험이 있고 너무 가깝게 거리만 고려한다면 메일어진 조각들을 충분히 이용할 수 있다. 이어야할 조각들은 확률 사이에 존재하므로 확률 방향성을 찾아서에 따라 다른 방향의 원도우를 사용한다. 즉, 검출된 방향에 따라 '0°, 45°, 90°, 135°, 4개의 7x5 원도우를 적용한다. 방향의 검출은 이어지는 화소의 15x15 원도우와 각각의 방향으로 한 개의 확률을 적용함을때의 원도우와 NANO값을 계산하여 가장 적절한 값을 보이는 방향을 선택한다. 검출된 7x5 원도우 안에 조각들을 잡는 방법은 다음과 같다[3].

1. 결정된 방향으로 검은 화소가 존재하는 최상단과 최하단을 결정한다.
2. 최상단과 최하단 사이에 존재하는 각각(행)에서 좌/우측(위/아래) 끝에 존재하는 검은 화소를 검출한다.
3. 만약 최상단과 최하단이 인도우의 중앙이면 그 열(행)의 검은 화소를 모두 지우고 대우하는 위치의 결과영상에 검은 화소를 설정한다. 그렇지 않은 경우 검은 화소 사이의 화소를 모두 검은 화소로 설정하고 결과영상에 검은화소로 설정한다.
4. 최상단과 최하단 사이의 좌/우측(위/아래)에 있는 검은 화소의 위치를 다음 방식으로 새로운 정한다.
 - newleftmost(i) = min{ leftmost(i), (leftmost(i-1) + leftmost(i+1)) / 2 }
 - newrightmost(i) = max{ rightmost(i), (rightmost(i-1) + rightmost(i+1)) / 2 }
5. 새로 얻어진 결정 사이의 화소들은 영업영상에서는 모두 검은 화소로 바꾸고 결과영상에는 검은화소로 바꾼다.
6. 검은 화소가 있는 경우에 최상단과 최하단의 좌측 골격을 새로운 시작점으로 위의 과정을 반복한다.

위와 같은 방법에서는 조각들을 모으는 과정에서 이웃한 숫자를 둘어놓기 이므로 위에서 이어지는 화소 집단들의 크기 정보를 이용하여 임계치 이상의 큰 집단끼리의 연결을 막도록 한다(그림 1).

2.2. 기울어진 보정

숫자열에서 숫자의 기울어짐을 찾기 위해서 각 숫자의 원도우들에 대해서 gradient 연산자를 적용해 각각의 화소에서의 기울기 정보를 얻고 이들 중에서 50° 130°, 230° 310° 사이에 화소들은 선택한다. 화소들의 연속된 정도를 가중치로 사용하면서 각 화소의 기울기값을 평균하에 문자열 전체의 기울기값을 얻는다. 얻어진 기울기값을 사용해서 입력영상은 보정한다[4](그림 2).

\[x_n = x - y \cdot \tan(\theta) \]
\[y_n = y \]

2.3. 연결요소 재구성

물리적으로 묶어있는 화소중에서 하나의 숫자에 포함되는 화소들은 높게의 정할 필요가 있다. 인식계에 전에 구조적인 정보를 이용해서 높게의 정할 것이 있다. 인식계에 전에 구조적인 정보를 이용으로 높게의 정할 구조가 있다. 다음과 같은 방법을 적용하는 경우에는 적절한 경우로 추정한다.

1. 횡단계에 수행으로 결정된 경우중에서 다음 점을 만족하지 않는 경우[6]

 - BVT 및 BVCH) or (BT 및 BHFA)

 - BVT: 두 횡이 매우 높은 경우(c.h >= 0.6 x ech)
 - BVCH: 두 횡이 매우 높은 경우(c.h/n/(c.h/n < 0.9)
 - BT: 두 횡이 큰 경우(c.h >= 0.3 x ech)
 - BHFA: 두 횡이 수행으로 높이 묶어있는 경우, abs(c.x-c.x) < 0.3 x ech)

2. 두 횡간의 거리가 매우 높고 높은 경우 하나의 횡자렬의 두께를 초과하는 경우
2.4. 숫자열에 포함된 날짜 수 추정

입력 숫자열에 대해서 연결요소(connected component)를 구하고 각 연결요소에 대한 위치, 크기 정보를 얻어 이를 바탕으로 날짜, 합체일을 획득하고 그로 인해 이상의 숫자가 접촉된 것들로 구분한다. 이는 숫자와 접촉된 연결요소인지를 결정하기 위해서 획득한 날짜, 날짜 높이 그리고 해수 수를 이용해서 다음 식에 의해서 결정한다.

\[
\begin{align*}
ssc &= (-2.11)ar + 5.8 \\
ar &= \frac{w}{ech} \\
ssa &= esw \times ech \\
ssc &= \frac{p}{ssa}
\end{align*}
\]

\(w \) : 연결요소의 폭
\(ech \) : 숫자열에서 가장 큰 연결요소의 높이
\(esw \) : 추정한 해수
\(p \) : 연결요소의 해수 수

식 (1)은 ssc와 ar을 축으로하는 2차원 평면에서 직선을 나타내며 날짜의 경우 이 두 특성값에 의해 좌표값이 이 직선의 아래쪽에 놓이는 경향을 보인다[5]. 이는 특성값을 이용해서 접촉된 숫자열을 검출하고 분할하고 다시 검출하는 과정을 반복적으로 적용해서 포함된 날짜 수를 추정한다.

3. 실험 및 결과

숫자열에 포함된 날짜 수 추정 결과는 숫자열 인식 시스템의 성능 향상에 도움을 준다는 가정에서 제시한 방법들이 날짜 수 추정 결과에 미치는 정도를 실험하였다. 실험에는 NIST DB special 3에서 추출한 3 ~ 10개 날짜를 포함하는 10976개의 숫자열 데이터를 사용했다. (표 1)에서 실험 결과를 보이고 있다.

<table>
<thead>
<tr>
<th>방법</th>
<th>숫자 추정 결과</th>
<th>증가 비</th>
</tr>
</thead>
<tbody>
<tr>
<td>날짜 수 추정</td>
<td>2332</td>
<td>890</td>
</tr>
<tr>
<td>연결요소 재구성</td>
<td>2667</td>
<td>1057</td>
</tr>
<tr>
<td>기울기 보정</td>
<td>2670</td>
<td>1059</td>
</tr>
<tr>
<td>조각난 영상 보정</td>
<td>2670</td>
<td>1063</td>
</tr>
</tbody>
</table>

위 결과는 각 방법을 누적해서 적용한 결과이다. 기울기 보정이나 조각난 영상 보정이 연결요소 재구성 결과와 비교해서 좋지 못한 이유는 실험에 사용된 입력 데이터가 모두 기울기 보정이나 조각난 영상 보정이 필요한 것은 아니었기 때문이다. 그러 나 다양한 데이터에 대해서 신뢰성을 보장할 수 있었다. 숫자열에서 날짜 수 추정 식은 분할 결과를 포함하지 않아 세 자 이상 접촉된 경우는 고려하지 않았다.

4. 결론

대부분의 인식 시스템에서는 유일한 숫자열 인식 시스템의 초기 과정은 인식률에 직접적인 영향을 주게 된다. 초기 과정의 오류를 극복하기 위해서 백분적으로 순환하며 처리할 수도 있지만 초기 과정의 결과에서 크게 벗어날 수 없다. 따라서 초기 과정에서 효율성을 제한하지 않는 범위 내에서 가능한 신뢰성을 갖는 처리를 하는 것이 인식률을 높이는 직접적 방법이다.

본 논문에서는 필기자의 습관에 의해 기울어진 숫자열에 대한 처리, 숫자열이 작은 조각으로 나뉘어진 것입니다 없는 영상에 대한 처리, 하나의 숫자에 포함된 높이 기울이므로 나뉘어진 경우와 대한 처리 그리고 이론적인 숫자가 접촉되어 있는 경우 이것을 검출하여 분할할 수 있는 정보를 제공하는 처리 방법을 제시하고 이 방법들의 유용성을 실험을 통해서 확인하였다.

참고문헌