3차원 애니메이션 시스템을 위한 인체 동작의 변형

정현숙*, 이일영, 정문렬
연세대학교 컴퓨터과학과, 숭실대학교 멀티미디어연구실*

Translation of Human Motion for 3D Animation System

Hyunsook Chung, Yilbyung Lee, Moon-Ryul Jung*
Dept. of Computer Science, Yonsei University,
Multimedia Lab., College of Information Science, Soongsil Univ.*

요약
모션 추천 결과와 협력의 연속 이미지로부터 구현하고자 하는 가장 큰 목적은 바로 이미 적응된 데이터가 있다면 그 데이터를 다른 모든 신체 동작에 적용하는 것이다. 본 연구는 신체 동작을 동일한 주기의 자료를 토대로 인간의 자연스러운 움직임을 구현할 수 있도록 인체 동작의 움직임에 대한 데이터 세트 방법과 영상 분석을 통하여 그에 대응하는 동작을 생성할 수 있는 패턴을 발굴하는 시스템을 개발하는 것이 목적이다. 이와 같은 시스템을 설계하기 위해 인체 동작에 대한 제어 방법과 시스템을 개발하는 외국의 연구를 도입하여, 신체 동작의 움직임에 대한 제어 성분 요소와 그의 조합을 표현할 수 있는 제어 플랫폼을 구현하면서 연구 또는 개발이 필요하다. 피드백의 이론 연구를 통해 진행한 인체 동작에 대한 모션의 데이터베이스화 하여 이것을 활용하고 또한 동작제어기술과 합성을 통하여 가상공간에서 사람의 동작행위를 대신할 수 있는 수준으로 확장할 수 있다.

1. 서론
현재 3차원(3D) 애니메이션의 문제점은 실감성이 제한되어 있다는 것과 사용자와의 상호작용(interaction)이 이루어지지 않고 있다는 것이다. 또한 애니메이션 작업의 대부분이 수작업에 의존하고 있기 때문에 많은 동작 하나만 생성하기 위해서도 많은 인원과 시간이 소요되고 있는 실정이다. 이는 3차원 애니메이션은 컴퓨터 시각 기술을 이용한 인체 모델링 및 연산, 동작 제어 및 표현성, 그리고 가장 현실과 상호작용으로 나뉠 수 있다. 이 중에서 동작 제어 및 표현성 문제는 아직까지도 많은 수 작업을 필요로 하므로 많이 연구하고 있다(2,5,6).

2. 기존 인체모델링과 애니메이션에 대한 연구

본 논문에서는 3D 애니메이션 구현을 현실화하기를 목표로 연구해 인체의 움직임으로 동작을 잘 표현할 수 있는 제작적 기반 방법을 많이 이용하는데 이 방법은 부가적인 장비가 필요 하지 않고 그동안 많이 드는 단점을 갖고 있다.

특히 기술적으로 국내는 아직까지 캐릭터 애니메이션 분야는 물론 영화의 3차원 모델링 및 애니메이션 시스템 차원에서도 정체 상품화가 된 케이스가 없는 실정이다. 이러한 문제점은 관련업체 대부분이 중소 기업이라는 점과 3차원 애니메이션 관련 요소 기술을 갖춘 인력이 희소한 데 있다. 그러므로 기존의 애니메이션작업의 실감의 결여 문제점을 해결하고 애니메이션 제작을 드는 막대한 시간과 노력, 경비를 줄이기 위해서는 실제 사람의 인체 동작 영상에 기반한 인체 동작 형식과 작동 인체동적 애니메이션 생성 방법이 필요하다(5,7).
고 있는 인체 모델링 및 에니메이션 관련 기술은 광범위한 분야에 광고로 접할 수 있으며, 일부 기술은 완성 단계에 이르러 있는 것도 있다. 특히 국외의 대학을 중심으로 하는 기반기술 연구 수준은 단순히 컴퓨터 그래픽에 의한 표현 수준을 넘어 해부학 및 인간 공학, 육동 역학과 같은 근본적인 부분에 대한 측정 기술을 바탕으로 표현 가능 범위를 넓혀가고 있다.

기반적인 기술 구현에서, 현재 세계적으로 인체 모델링 및 에니메이션 분야에 대한 연구를 주도하고 있는 곳은 미국의 펜실베니아 대학, 캐나다의 토론토 대학, 스위스의 제네바 대학과 EPFL (Federal Institute of Technology) 및 미국의 조지 위시던 대학 등의 컴퓨터 그래픽 관련학과들이 있다. 미국의 펜실베니아 대학의 Norman Badler 교수 연구실에서는 주로 가장 인간이(Virtual Human)의 구현에 초점을 맞춘 연구가 진행되고 있는데, 이는 인간의 동작 특성을 프로그래밍하여 실제 인간이 행동하는 방식으로 동작하는 가상적인 인간 모델을 만들어 보고자 하는 시도이다[1,2,5].

3. 인체모델링 변경 시스템

3.1 시스템 개요
모션 캡처의 수행결과 얻어진 데이터와 연속된 이미지로부터 구현하고자 하는 가장 큰 목표는 바로 이미 적용된 데이터가 있다면 그 데이터를 다른 모든 시체 동작이 적용하는 것이 본 논문의 조건이다.

(그림 1) 시스템의 개략적인 구조

특히, 신체 동작을 응용하여 추출된 자료를 토대로 인간의 자연스러운 움직임을 할 수 있도록 인체 동작의 움직임에 대한 데이터를 제어 방법과 영상 분석을 이용하여 그에 대응하는 다른 동작을 생성할 수 있는 제작 방법을 개발하는 것이 목적이며. 이를 통해 신체 동작의 제어를 위해서는 외부의 신경 연구를 도입하여, 신체 동작의 움직임에 대한 제작식 성의 요소와 그것의 조합을 표준화할 수 있는 제작식을 연결하는 모형들에 근거하여 입력 영상에서 얻은 제작식을 다른 유사한 동작에 사용하기 위한 합성하는 기술을 구현하는 것이다. (그림 1)은 제안하는 시스템의 개략적인 구조를 보여 주고 있다.

데이터베이스에 저장된 이미지로부터 동작을 생성하고 텍스트로 입력 받은 문장을 동작과 동기화시키고 다른 동작도 표현 가능하도록 하는 것이다.

3.2 시스템의 핵심기술
제안하는 시스템의 구체적인 구성요소는 (그림 2)와 같다.

(그림 2) 시스템의 구성요소

3.2.1 인체 동작의 DB화를 위한 기술
모션 캡처된 화일은 특정한 포맷에, Biovision hierarchical BVH)를 가진다. 이 화일 포맷을 해석함으로써 3차원 동작이 크리다면, DB에는 이 화일 포맷과 해당 모션의 의미와 같이 해석하여 저장하여야 한다. 이를 위해 멀티디지털 데이터를 저장하는 것과 같이 객체지향 데이터베이스 설계 기법으로 이루어진다. 또한 많은 양의 모션 데이터를 쉽고 빠르게 검색하기 위해 모션 데이터의 해석 기법이 필요하다. 단순한 키우의 매칭 방식의 문자열 검색에 의한 해석 뿐만 아니라 사용자의 세션, 움직임에 따른 검색이 이루어지도록 하기위해 모션의 의미를 사용자에 맞게 정보화한 데이터베이스를 사용하게 되는 한계때 포맷으로 포맷화된 데이터기반 기술은 제안하고자 한다. 요소기술로서 쉽게, 모션 캡처화일 포맷에 따른 데이터 표현 기법로서 모션 캡처된 데이터가 저장된 데이터베이스의 디자인 도구로서는 사용자에게 3차원 이미지로 보이지만 실제 저장되는 화일에는 특정한 포맷이 있다. 이를 포맷들은 BVH, BVA, ASK/SDL 등이 있다. 특히로서는 객체지향 데이터베이스 설계 기법에서 모션 캡처된 데이터를 데이터베이스에 저장하기위해서는 관계형 데이터베이스 구조로는 부적합하며 이미지, 움직임 등을 객체로 저장하고 쉽게 검색할 수 있는 객체형 데이터베이스가 적합하다.

이 객체형 데이터베이스에 데이터를 저장하고 검색하기 위한 설계 기법이 필요하다. 각 모션에는 모션방식(형태), 모양, 의미, 영상 등의 정보가 있으며 데이터베이스에 모션화된 모션의 연결된 동영상 뿐만 아니라 각 모션 하나하나를 그 모션의 형태, 의미와 함께 저장할 수 있는 스키마로 설계하여야 한다. 마지막으로, 모션 데이터의 해석 기기로서 웹 로봇(Web Robot)은 네트워크 상에 존재하는 병태하거나 다양한 resources를 쉽게 접근하게 접근하는 소프트웨어로서, 단순히 웹정보를 끌어들이면서 문서의 내용을 가져오는 기능을 수행하는 프로그램이다. 이 기능은 모션 데이터에 대한 해석 정보를 추출하기 위해 필요하다.

3.2.2 현의재/재생 및 응용에 의한 다중모드 검색엔진 기술
4.2 온라인 PC 게임 및 온라인 화상회의

실시간적인 모션 표현을 통해 하기 위해서는 표준화되고 사실적인 양질의 모션 데이터가 제공되고 또 엽서별로 검색되어 있는 입력 카테고리와 모션만 표현될 수 있어야 한다. 그러한 요구조건에 적용된다면 온라인 PC게임에서 사용자의 반응에 대해 3차원 카테고리의 모션을 실시간적으로 변화할 수 있으며 거의 거의 두께의 화상화가 가능하다. 또한 화상화에 3차원 카테고리와 모션을 활용함으로써 많은 양의 실시간 데이터를 네트워크상에서 중재를 필요없이 최대 화상화의 유사 카테고리에 모션 데이터를 기반으로서 실시간 모션 동작을 검색하여 표현함으로써 보다 쉽게 화상화를 진행할 수 있다.

5. 결론

선진국의 경우에도 많은 동작에 관련된 데이터가 많고 자료화되어 있고 실제 Viewpoint에서 [1] 부분적으로 필요한 데이터를 구현할 수 있으나 개인 사용자가 이용하기에는 아직 부담스러운 가격이다. 국내의 사례는 좀 더 비용 경제적으로 구현할 수 있으나 3 차원 데이터기반을 할 때 적절한 동작은 개인 사용자가 이용하기에는 부적합한 면이 있어, 이와 같은 데이터는 일반적으로 사용하기 어렵다. 국내외적으로 현재까지는 인체의 전반적인 모션과 전문 데이터에 대한 데이터가 DB화 되어 있지 않고, 인체동작은 관련된 데이터를 기준으로 인체 동작의 생성 및 합성 기술과 인체 동작의 합성을 통한 제작 방 법과 구현 기술로서 인체에이션 작업 시간을 줄일 수 있을 것으로 예상된다. 또한 인터넷 상에서도 참여자의 실제 인체 동작을 보다 훨씬 화상화 동작을 생성하고 복원하는 방법을 이용하여 더 다양한 동작을 생성할 수 있는 시스템이 될 수 있다.

참고문헌