1. 서론

이동 통신을 위한 텔레매틱 모델은 좋은 품질의 이동 통신 서비스를 제공하기 위하여 요구되는 적절한 네트워크 자원의 용량 및 성능을 예측하고, 단말기의 공간과 시간적 인 이동성에 적합한 모델이어야 한다. 일반적으로 이동 통신 텔레매틱 모델은 2가지 하부 모델로 나누어 정의한다 [1]. 첫째는 Traffic Source 모델로 이동성 모델(Mobility Model)이라고도 하며 이동 단말에 의한 사용자의 이동성 정보를 포함하고 있다. 둘째는 Network Traffic 모델로 BS(Base Station)나 MSC(Mobile Switching Center)에 관한 음직임이 없는 네트워크 요소로부터 측정된 트래픽 정보를 포함하고 있다. 따라서, 이러한 2가지 하부 모델이 모두 통합된 모델이 이동 통신을 위한 텔레매틱 모델로 사용된다. 이동통신망에서 사용자의 가장 근접한 이동 통신 구성을 요소는 기지국(Base Station)[2][3]이며, 이동 통신 서비스에서 사용자의 통화 품질에 가장 많은 영향을 줄 수 있는 요소는 적절한 위치에 적절한 용량의 기지국을 운영하는 것이 될 수 있다. 결국, 기지국을 중심으로 사용자의 이동성을 반영하는 Traffic Source Model과 기지국에서 처리되는 사용자 통화 자료를 반영한 Network Traffic Model이 이동 통신 서비스를 위한 텔레매틱 모델로서 가장 적합할 수 있다. 본 논문에서는 텔레매틱 모델을 정의하기 위한 하부모델 중 하나인 Network Source 모델을 사용자가 통화하면서 이 동할 수 있는 공간인 기지국 중심으로 요일별 통화량 분포에 대한 분석하고자 한다. 이를 위하여, 본 논문에서는 기존에 정립되어 있는 모델을 사용하여 통화량을 분석하는 Network Traffic Model에 반영하고, 이를 일반적인 이동 통신 시스템에 적용할 수 있는 방법을 제시한다. 본 논문의 구성은 다음과 같다. 2장에서는 Network Traffic Model을 정의하기 위해 선정된 기지국들의 통화 특성을 정의하고 3장에서는 정의된 기지국에서 수집된 요일별 통화량 분포를 통계 자료를 분석하고, 이에 따른 Network Traffic 모델을 정의하고, 정의된 Network Traffic 모델을 시뮬레이션에서 적용할 수 있는 방법을 제시한다. 4장에서는 본 논문에 대한 결론과 향후 연구 방향에 대해서 설명한다.

2. 기지국 설치 지역 특성

이동 통신 서비스를 위한 기지국은 이동 통신 서비스를 제공하기 위한 모든 지역에 설치되어 있어야 한다. 도심 지역에 설치되어 있는 기지국은 평균적인 사용자 업무 시간에 주로 통화가 발생할 것이며, 주택가에 위치한 기지국이나
공원에 설치되어 있는 기지국은 도심에 있는 기지국과 다른 나들대로의 통화 매체를 가지고 있을 것이다. 출퇴근 시간과 업무 시간과 같은 특수한 시간대를 가지는 도시 지역에서의 효 과적 통제는 시간의 의미가 매우 중요하며, 시간대별로 발생하는 효 과적 통화 시간과 효 과적 발생확률을 달리한 모델이 필요하다.

공간적 의미에서 [4][5]는 모든 센터 간의 크기와 같은 효 과적 발생한다고 가정하지만 실제로는 그렇지 않다. 특정 지역에서는 상당히 많은 효 과적 발생하고, 어떤 지역은 거의 효 과적 발생하지 않음을 수도 있다. 따라서 본 논문에서는 이러한 차이에 대한 근거를 도시지역에 적용되어 있는 도시계획을 참고하여 공간적 구분을 하기로 한다.

도시계획은 [6][7]과 같이 다양하게 세분화되었지만 실제적으로는 일반주거지역, 중심상업지역, 중심공업지역, 자연녹지역이 전체 도시지역의 대부분을 차지하고 있다. 따라서 본 논문에서는 도시계획 용도지역을 크게 4가지 목표인 주 거, 상업, 중심공업, 녹지역으로 분류하고, 특이한 효 과적 발생은 역 주변과 터널 주변을 포함하였다. 도시계획 용도지역의 시간에 따른 효 과적 분석을 통해서 시간과 공간적인 요소를 Network Traffic Model에 적용하였다.

3. Network Traffic Model

Network Traffic Model은 시간과 공간적인 변화에 따른 다레트릭 분포를 특성화하는 것이다[8]. 시간에 대한 의미는 시간에 따른 통행 부하(traffic load)의 크기가 달라지는 것을 나타내고, 공간적인 변화는 공간에 따른 이동 통행 사용 인구의 차이에 의한 통행 부하(traffic load)의 변화를 나타낸다. 결국, Network Traffic Model은 시간과 공간의 변화에 따른 다레트릭 파라미터의 변화를 모델링하는 것을 의미한다. 본 논문에서는 2장에서 제시한 도시계획에 의한 지역적 구분을 통해 기지국에서의 효 과적 발생 특성을 분석하였다. 이러한 모델에서는 양기 기지국이 두 개 이상의 용 도지역에 걸쳐 있을 경우는 해당 용도지역에 맞는 통화 특성을 분석할 수 없게 되므로, 도시계획이 잘 표현되어 있는 도시계획 지도를 활용하여 각 용도지역 가운데에 있어 용도 지역이 집적지 않은 이동 통신 기지국의 통화 자료를 수집하여 분석하였다.

3.1 각 지역의 요일별 통화 특성

이 절에서는 선정된 도시계획 용도지역의 시간적 통화 특성을 분석하기 위하여, 각 지역의 요일별 통화 특성을 분석 한다. 각 도시계획 용도지역에 설치되어 있는 기지국은 하루 24시간 해당 지역을 서비스하고 있으며, 하루 중 시간대에 따른 통화 서비스 요양에도 많은 변화가 있을 것으로 예측할 수 있다. 그림 1은 각 용도지역의 시간대별 발생 효과수의 평균을 나타낸 것이다. 전체적인 분포에서 모든 지역이 시간대별로 거의 유사한 효과 패턴을 나타내고 있음을 알 수 있다. 도시계획 용도지역별 시간대에 따른 통화량 분석은 요일별로 수행한 결과는 다음과 같다.

(1) 주거지역/중소공업/녹지역
주거지역에서 발생되는 효과 특성은 그림 2에서 보이는데 바와 같이 요일별로 주중과 주간 시간대에 맑추어 동화가 집중되는 현상을 보이고 있다. 반면, 오전과 밤 시간대에는 특별한

<table>
<thead>
<tr>
<th>지역 구분</th>
<th>지역 특성</th>
</tr>
</thead>
<tbody>
<tr>
<td>주거지역</td>
<td>주로 출퇴근에 의한 특성이 있음</td>
</tr>
<tr>
<td>상업지역</td>
<td>영업 시간대에 많은 유동 인구</td>
</tr>
<tr>
<td>중심공업지역</td>
<td>중심공업지역에 많은 유동인구 특성</td>
</tr>
<tr>
<td>녹지역</td>
<td>적은 상업 및 유동인구</td>
</tr>
<tr>
<td>터널 주변</td>
<td>터널 주변의 특성에 의한 특성</td>
</tr>
<tr>
<td>역(역) 주변</td>
<td>역 주변의 특성에 의한 특성</td>
</tr>
</tbody>
</table>

그림 2 주거지역의 시간대별 발생 효과수

그림 3 상업지역의 시간대별 발생 효과수

그림 1 도시계획 용도지역의 시간대별 발생효수

[표 1 선정된 시간대 지역 구분 및 특성]

263
통화 집중 현상은 나타나지 않는다. 준공업지역과 논적지역
은 주거지역의 시간대별 통화 패턴과 유사하다.

(2) 상업지역/역(野) 주변
상업지역에서 발생되는 호의 특성은 그림 3에서 보인 바와
같이 주중 오후 업무 시간대에 통화가 집중되고 있음을 보
여 주고 있으며, 밤간 시간 이후의 통화량이 다른 지역에
비하여 급속히 감소하고 있음을 보여 주고 있다. 이러한 현
상은 상업지역에서의 외부 지역으로 인구 이동이 오전 업무시
간에는 외부 지역에서 상업지역으로 유입되었다가, 밤간 시
간 이후에는 외부 지역으로 유출되어 밤간 시간 이후의 발
생 통화 수가 급속히 감소하게 된다. 상업지역에서의 통화
는 상업지역내에 상주하는 인구보다 외부 유입되는 유동 인
구에 의하여 결정됨을 알 수 있다. 결국, 이 지역에 설치되
는 기지국 설계에서는 이 지역의 상주 인구보다는 업무 시
간대인 인구를 나타내는 주간활동 인구를 분석하는 것이 더
중요함을 나타내고 있다.

그림 4에서 보인 바와 같이 역 주변 지역의 시간대별 호
발생의 특이한 점은 다른 지역에서 나타나는 토요일 밤간
시간대의 급속한 증가 후, 급속한 감소 현상이 있다는
것이다. 이런 현상은 그림 1에서 역 주변 지역이 상업지역과
거의 유사한 호 패턴을 보이는 것과는 다른 점으로서
상업지역의 사용자들이 토요일 밤간 시간 이후에 빠르게
다른 지역으로 향거나가는 것이 비하여, 역 주변 지역은
주말에 역(野)으로 유입되는 유동 인구의 영향으로 토요일
밤간 시간대 이후의 급속한 유동 인구 감소 현상이
 나타나지 않는 것으로 판단된다.

(3) 터널 주변
그림 5에서 보인 바와 같이 터널 주변 지역의 시간대별 호
발생의 특이한 점은 요일별 시간대에 따른 급속한 발생 호
수의 변화가 가장 적다는 점이다. 특히, 일요일이 시간대별
로 발생되는 호수의 다른 요일은 시간대에 발생하는 호수와
차이가 다른 지역에 비하여 가장 적다는 점이다. 터널
주변이 다른 지역에 비하여 상주 또는 주간활동인구가 적으
므로, 이들에 의한 영향보다는 이동하는 차량에 의해 주로
발생되어 요일 및 근스시간대에 의한 영향이 가장 적은 것
으로 판단된다.

4. 결론

본 논문은 도시계획 용도지역에 설치되어 있는 기지국에서
의 시간적 통화 요청 자료를 분석하여, 도시계획 용도지역
에 따른 Network Traffic 모델의 한 부분을 제시하였다. 제
시한 Network Traffic 모델에서는 상업, 주거, 준공업, 그리
고 논적지역으로 되어 있는 도시계획 용도지역과 이외에 특
이한 호 발생 패턴이 예측되는 역과 터널 주변에서의 기지
국 요일별 통화량 분포를 분석하였으며, 이를 시뮬레이터에
적용하기 위한 평균값 및 분포값을 구하였다. 3장에서 보인
바와 같이 각 도시계획 용도지역의 시간대 및 요일별
통화량 발생은 해당 지역의 상주 인구와 근무시간대에 외부
에서 유입되는 주간활동인구에 의하여 통화가 발생됨을 알
수 있다. 따라서, 보다 정확한 Network Traffic 모델을 지시
에서 주의가 요구해야 할 요소는 교통분야에서 활용
되는 주간활동인구 및 유동인구로서, 이들에 대한 분석을
 통하여 보다 정확한 통화량 예측이 가능해질 수 있을
것이다.

참고 문헌
[5] 김영용, 화성호, 한영남, "CDMA 이동통신 시스템 유무선
시뮬레이터 및 성능 분석," Telecommunications Review, Vol. 6-5
c/plan.txt

![그림 4 역 주변의 시간대별 호 발생 수](image4.png)

![그림 5 터널 주변의 시간대별 호 발생 수](image5.png)