Deposition of thick free-standing diamond wafer by multi(7)-cathode DC PACVD method

다이아몬드를 반도체용 일방산용기관 등으로 사용하기 위해서는 수 백 \(\mu \text{m} \) 두께의 대면적 웨이퍼가 요구된다. 이를 위해서 DC arc jet CVD, MW PACVD, DC PACVD 등이 개발되어, 현재 4"에서 8" 까지의 웨이퍼 형성이 가능하다. 그러나 형성된 웨이퍼의 평활도 및 웨이퍼에 잔류하는 crack 등이 많은 문제를 일으키고 있다. 본 연구에서는 multi-cathode DC PACVD법에 의한 4" 다이아몬드 웨이퍼의 형성과 형성된 막의 특성변화에 대한 연구를 수행하였다. 또한, 웨이퍼의 확과 crack 발생여건에 대한 고찰을 통해 확과 crack이 없는 웨이퍼의 제작방법을 고안하였다. 사용된 응력의 수는 일곱 개이며, 투입된 power는 각 응력 당 약 2.5 kW(4.1 A-600 V)이었다. 사용된 기관의 크기는 직경 4"이었다. 형성압력은 100 Torr, 가스유량은 150 sccm, 중착온도는 1250 \(^\circ\text{C}\)~1310 \(^\circ\text{C}\), 수소가스의 메탄조성은 5%~8%이었다. 형성 중 막에 인가되는 응력은 형성 중 중착온도의 변화에 의해 제어하였다. 막의 결정도는 Raman spectroscopy 및 열전도도를 측정을 통해 분석하였다. 성장속도 및 다이아몬드 peak의 반가폭은 메탄조성 증가(5%~8%)에 따라 증가하여 각각 6.6~10.5 \(\mu\text{m/h}\) 및 3.8~5.2 cm\(^{-1}\)의 분포를 보였다. 6%CH\(_4\) 및 7%CH\(_4\)에서 형성된 웨이퍼에서 측정된 막의 열전도도는 11 W/cmK~13 W/cmK 정도로 높게 나타났다. 막두께의 uniformity는 최대 3.5%로 매우 균일하였다. 막에 인가되는 응력의 제어로 직경 4" 형성면적에서 두께 1 mm 이상의 균열 및 틀이 없는 다이아몬드 자유막 웨이퍼를 형성할 수 있었다.