조합형 전기집전기를 이용한 집전효율 특성

Characteristics of efficiency by using the combined electrostatic precipitator

김용진, 정상현, 홍원석, 황태근, 윤영욱, 김두현, 하병길, 함병훈

한국기계연구원, 한국중공업

1. 서론

전기집전기는 산업 분야 및 청소기 집전을 위해 널리 이용되며, 고전기 저항 분전에 의한 집전극 표면의 역전기 전기집전기에서 가장 큰 문제이다. 이러한 역전기 현상을 방지하기 위해 가스온도 제어, 가스조절, 하전 제어 등을 다양한 방법이 시도되고 있다. 전기집전기에서 고 저항성 분전 및 역전극의 영향으로부터 높은 집전효율을 얻기 위한 방법 중 하나로 이동 전극형 방식(Moving Electrode Electrostatic precipitator, MEEP)과 고정전극형(Fixed Electrode Electrostatic precipitator, FEEP)에 필요한 방식으로 구성된 조합형 전기집전기가 개발되고 있다.(Toshiaki Misaka et al. 1996) 이동전극형 전기집전기는 입자경이 미세한 분전에 대해 효과적이지만 입자크고 공정도의 분전에는 내구성이 저하하는 경향이 있으며, 초기 설치비용이 대단히 큰 편이다. 따라서 본 연구에서는 가스의 상류층 중앙의 고정전극형(투입방식), 하류층에 이동전극형(BRUSH방식)을 조합하여 배치한 조합형 전기집전장치를 이용하여 고정전극형에 적류(DC/볼스(pulse) 고전압 하전 방식, 이동전극형에 적류 하전 방식을 사용하여 고저항 분전의 역전극을 줄이는 동시에 낮은 소비전력에서 높은 집전 효율을 얻으므로써 설치 비용/부지 및 연료대가 제공한 평가를 가져올 수 있는 최적의 조건을 얻기 위한 연구를 수행하였다.

2. 실험 장치 및 방법

본 장치는 석탄 화력 발전소의 처리가스 용량을 기초로 최대 2.5MWe 급의 용량으로 처리가제의 온도를 비타니에까지 300℃ 까지 조절 가능하도록 설계되었으며, 고정부의 내부는 2 Passage로 구성되었으며 집전관 간격을 300~500mm 까지 조절 가능하도록 하였으며 후단의 이동전극구는 집전관 간격 460mm으로 하여 3 Passage로 되어 있고, 집전극이 상하로 회전하여 비정전극에서 반대로 회전하는 brush에 의해 진입한 입자를 제거하도록 하는 시스템으로 제작되어 있다. 전단의 공정모형 전기집전기비 집전관 간격을 400mm로 고정한 후, 가스 온도 120℃, 집전기 내부 습도 4%로 조명한 후, 5g/m²/min 분전을 주입하였다. 고정전극의 전후단과 이동 전극부의 전후단에서 공기의학적 입내계수기(APS)를 이용하여 집전효율을 구하였으며, 이때 집전에 필요한 인가 전압 및 그때 호르는 전류를 측정기에 계측하여 소비전력의 끼치 경제성을 비교하였다.

3. 결과 및 고찰

그림 1은 공정부의 하전유무에 따라 이동부에서 소비전력별 집전효율 변화를 알 수 있는 그림으로 공정부의 하전을 시키면 이동전극부에서는 낮은 소비전력에서 높은 집전효율 상승효과를 가져온다는 것을 알 수 있다. 또한 공정부의 하전을 하지 않았을 경우에는 이동 전극부에서 낮은 소비전력과 낮은 집전효율을 보인다는 것을 볼 수 있다. 이는 고정전극부에서 하전을 시키면 이동전극부에서는 낮은 전압에서 주로 높은 집전효율을 가진다는 것을 알 수 있으며, 일정 전압이상에서는 더 이상 집전효율 상승효과가 없다는 것을 알 수 있다. 그럼 2는 조합형 전기집전기에서 고정부와 이동부를 따로 하였을 때 구간 집전효율을 합산한것과 조합하여 입/출구에서 나온 집전효율을 비교한 것으로 그림에서 공정부의 전압을 고정한 후 이동부의 전압을 변화하였을 때 단순 조합형보다 복합형이 동일 소비전력에서 집전효율이 높게 나타남을 보였다. 그리고 이동부의 전압을 고정하고 공정부의 적류 및 필스전압을 변화시켰을때에는 적류전압만 변화시키면 단순 조합형과 복합형 모두 집전효율은 일정하게 유지되고 소비전력만 단순 조합형이 오히려 높아진다는 것을 알 수 있었다. 그러나 적류 필스비에 따른 효과에서는 단순 조합형이 소비전력과 집전효율 모두 높게 나타난다는 것을 알 수 있었다.
4. 결론

역전압 방지 및 경제성면에서 유리한 조합형 전기집전기의 실험에서 다음과 같은 결과를 얻었다. 고정전극부에서 하전을 시키면 이동전극부에서는 낮은 전압에서도 높은 집전효율을 가진다는 것을 알 수 있으며, 일정 전압이상에서는 더 이상 집전효율 상승효과가 없다는 것을 알 수 있었다. 그리고 고정부와 이동부를 단독으로 설치한 것보다 복합적으로 설치한 것이 효율적이었다.

참고 문헌

N.Tachibana and H.Fujishima 「APPLICATIONS OF ELECTROSTATIC PRECIPITATOR WITH THE INTERMITTENT ENERGIZATION」, PROCEEDING OF I.C. ON MODERN ELECTROSTATICS Toshiaki Misaka and Akio Akasaka etc. (1996) 「Electrostatic precipitator combined pulse charging section with moving electrode section for high resistivity dust」, 6th ICESP

J.O.Chae, K.W.Suh etc. (1998) 「A STUDY OF ESP USING PULSE ENERGIZATION FOR COLLECTING HIGH RESISTIVITY AND FINE PARTICLES」, Pro. 7th ICESP