피치가변격자를 이용한 자유곡면 형상측정에 관한 연구

박윤창*, 정경민*(선문대 기계 및 제어공학부), 박경근**, 정석준***(선문대 기계과 대학원)

A study on the Measurement of 3-D object, make use of grid fringe generator.

ABSTRACT

Noncontact measuring methodology of 3-dimensional profile using CCD camera are very attractive because of its high measuring speed and its high sensitivity. Especially, when projecting a grid pattern over the object the captured image have 3 dimensional information of the object. Projection moire extract 3-D information with another grid pattern in front of CCD camera. However, phase measuring profilometry(PMP) obtain similar results without additional grid pattern. In this paper, new method for grid pattern generation system by polygonal mirror and Laser Diode. This system is applied the projection moire and the PMP.

Key Words : grid pattern(격자 무늬), PMP(위상 측정형상 측정법), Projection moire(형상식 모아레)

1. 서론

3차원 형상의 측정은 가공물의 검사, CAD/CAM, 의료, 솔리드 모델링등 다양한 분야에서 반드시 필요할 기술이다. 광학적 비정면 방식은 높은 측정 감도와 고속 측정등의 장점을 가짐으로써 3차원 측정 분야에서 매우 유만의 방식으로 인식되고 있다.

측정대상 물체에 격자 무늬를 주사하는 방식은 물체의 3차원 정보를 얻어내기 위한 쉽고 효율적인 방식이다. 격자 무늬가 주사된 물체의 영상은 CCD 카메라에 의해 횡幅할 경우 격자 무늬는 물체의 형상에 따라 변형되어 보이므로 횡幅된 2차원 변형 격자 무늬 영상에는 물체의 3차원 정보를 포함하게 된다. 2차원 변형격자 무늬로부터 3차원 정보를 추출하기 위한 가장 간단한 방법은 주사에 사용되는 격자와 같은 기준 격자를 통해 변형된 격자 무늬를 횡幅하는 모아레 프런치법이다[1,2]. 모아레 무늬는 물체의 높이에 따라 주기적으로 변형하므로 모아레 무늬의 공간 위상(Spatial Phase)을 측정하여 물체의 높이 정보를 추출할 수 있다. 하지만 모아레 무늬의 공간 위상은 조명의 방향, 물체의 반사도등에 큰 영향을 받기 때문에 기존의 레이저를 이용한 위상 측정 엔터페로모시 기법(Phase Measuring Interferometry)의 원리를 적용하여 두 영 격자들을 이용시키며 영상을 횡幅하여 모아레 무늬의 시간중 위상을 횡幅함으로써 측정 감도를 향상시킬 수 있다[3]. 횡幅된 모아레 무늬의 위상에는 물체의 높이 정보가 포함되어 있지만 실제 횡幅할 수 있는 위상은 \(\pi \) 와 \(\pi \) 사이로 중첩(overlay)된 값이므로 물체의 높이 변화가 높 경우에는 끌린 위상값(unwraped phase)을 구해야 물체의 실제 높이를 구할 수 있다. 일반적으로 높이가 역군적으로 변하는 경우에는 위상의 연속성을 가정함으로써 끌린 위상 값을 복원할 수 있는 높이 변화가 불연속일 경우에는 2가지 기저(Pitch)의 격자들을 사용함으로써 절대위상을 추출하기도 한다.

기존 격자를 형성시키지 않고 변형된 격자 무늬를 이용하여 3차원 정보를 추출하는 방식인 위상 측정 형상 측정 기법(Phase Measuring Profilometry, PMP)에 대한 연구도 많이 수행되어 왔다[4-6].
본 논문에서는 모아레나 P&F방법을 이용하여 3차원형상을 측정시 서그램 구성에 필수적인 견자무늬 생성장치에 대하여 새로운 방법을 제시하고자 한다.

2. 본론

그림1에 기존에 사용하는 견자무늬 생성장치의 구성을 보였다. 그림1을 보면 알로렌지원(c)

![Fig. 1. 기존의 견자무늬 생성 장치](image1)

의 빛이 유리격자(b)에 조사되면 유리격자에 세겨진 견자무늬가 측정대상(a)에 투영됨을 알 수 있다. 기존의 이와같은 방법은 실험장치가 고정된 상태에서 측정대상물의 모양이나 크기에 따라 투영된 견자무늬의 간격(pitch)을 변경해내는 경우 흔한 대처가 어렵다는 점과 위상변조를 위하여 견자를 이용하는데 있어 견자이송장치(d)가 필요하다는 단점이 가지고 있다. 이는 유리격자(b)가 하드웨어적으로 고정되어 있어 견자의 형태가 고정되어 있기 때문이다. 이러한 단점을 효과적으로 개선할 수 있는 장치의 구성도를 예 보였다. a는 Laser Diode(이하 ‘LD’로 표기)로서 광량은 655nm이상의 RED 및 적외선 영역에 특성을 갖는다. b는 LD Driver로서 LD의 구동 전력을 공급하며 LD의 출력을 일정하게 유지시키는 역할을 한다.

c는 Timing Control Driver(이하 ‘TCD’라 한다)로서 컴퓨터(d)의 ISA Slot에 장착되어 프로그램에 의해 LD의 커고 켜는 신호를 발생하여 LD Driver로 보낸다. e는 고속으로 회전하며 회전속도의 변화가 가능되어 있는 SPINDLE MOTOR를 사용하였다.

f는 Spindle Motor의 회전축에 장착된 회전다이어링이다. 회전다이어링의 면수는 본 장치의 출력 사양에 따라 가변적일 수 있다.

![Fig. 2. A composition of grid fringe generator](image2)
화살선은 LD에서 출발한 광의 아동 경로를 나타내고 있다. 고속으로 회전하고 있는 회전다면경의 1개 면에서의 광은 평행하게 떨어지고 (a)와 같이 각물면에 입사되는 광의 입사각이 작은 경우 회전거울 앞에 놓인 Lens를 통과하지 않는다. (b)의 경우와 같은 입사각에서는 Lens를 통과한다. 끝으로 (c)와 같이 입사각이 큰 경우는 다시 (a)와 같이 Lens를 벗어나게 된다. 이렇게 생성된 광의 광단이 수직평면에 떨어지는 모양을 그리보면 그림5와 같다. 회전다면경의 반사각에 따라 Lens를 통과한 빛은 각선의 연속으로 변환되 두꺼운 직사면체를 이루는 반면 Lens를 통과하지 못하는 반사각에서는 정점이 그대로 나타나 가늘다란 직선을 이루게 된다. 이를 그림4에서와 같은 타이밍으로 LD의 점멸 주기를 조절하게 된다. 회전다면경이 고속으로 회전하면서 각각의 1개면에서 LD로부터 오는 광을 반사시키는 유효면의 구간을 정화시켜 동기신호기 위하여 유효면의 길면에 해당되는 평행면상에 PD를 위치시키면 동기신호를 얻게 된다. P는 이때 얻어지는 동기신호와 주기를 나타낸다. Clock은 LD를 점멸시키기 위한 기준 신호로 사용된다. HSYNC는 동기신호로서 유효면의 시작부를 TTL High Level (DC 4.2V 이상)을 출력하려고 유효면의 끝에서 순간적으로 TTL Low Level (DC 0.8V 이하)을 출력하게 된다.

Fig4. A Timing diagram and moving grid pattern.

격자무늬를 원하는 간격으로 이동하는 방법을 보면 그림4에서 LD의 점멸 신호인 VIDEO 1 ~ VIDEO 4를 보면 각각 동기신호의 시작점을 기준으로 t1 ~ t4까지 시간 차별을 가지고 있음을 보였다. VIDEO 1에 대한 각자의 생성은 그림5와 같다. 이러한 시간 차별에 의해 이동되는 격자무늬를 그림6에 보였다.

Fig5. A grid pattern by LD on-off.

-21-
3. 실험 및 고찰

일반적으로 3차원 형상측정에 사용되는 격자무늬의 중요한 특성은 평가시도이다. 축정하고자 하는 물체에 격자무늬를 형성시켰을 때 이미지에서에서 보는 격자무늬의 평가도가 정현과의 모양을 갖는 것을 통해 하고 있다. 따라서 이 장치의 현실성은 보이기 위해 평가시도를 실험하여 보았다. 위의 이론을 토대로 격자 주기를 쉽게 생성시킨 실제이미지가 그림7에 있다.

Fig.6. A Moving grid pattern.

그림 8은 CCD상의 점검(320,240)에서의 광량 변화를 보인 것이다. 그림에 따라 한 주기동안 정현과 특성을 갖음을 보였다. 그림 9는 그림 7의 격자 주기를 이용하여 얻은 입상에 대한 모아대 무늬이다.

Fig.7. A real image of grid pattern.

Fig.8. A Intensity variation of moved grid fringe at a point.(320,240)

4. 결론

본 논문에서는 광학적 미결속 3차원 형상측정법으로 많이 연구되고 있는 모아대법과 PNP법에 이용되는 격자무늬 생성법에서 이것의 단점을 개선시킨 새로운 장치를 보였고 실험을 통하여 격자의 평가도가 정현특성을 가졌음을 확인함으로 실용성을 보였다. 측정 대상물의 크기에 따라, 기존에 어려웠던 피치 가변 이 용이해졌고, 이에 따라 다양한 크기의 물체의 자유곡면 측정이 용이해졌다. 입상의 모아대 무늬를 확득해 보았다.

후기

본 연구는 한국과학기술원 제경 선문대학교 공조기 술연구센터의 지원에 의한 것입니다.

참고문헌