A Study on Force Reflection Controller of Tele-Surgery Control System using ERF

J. O. Shin*, E. J. Rhee, M. K. Park

ABSTRACT

The development of a robot system being able to work instead of human in the hazardous environment have been conducted for many years. In this study, the new design of controllers for the Master-Slave system is discussed. The Master-Slave system, force, velocity and torque signals are communicated between a master and a slave system. The conventional requires the enhancement of characteristics of tacility for minute force, precision signals and mechanical abrasion of loader. It is possible by controlling the viscosity of ERF(Electro rheological fluid) since it varies with the electric field. Design of controller as well comparison between numerical simulation and experiments as will be presented. Furthermore, current methodology is also applicable to design of tele-surgery

Key Words : Master-Slave System, Tele-Surgery, Electro-rheological Fluid

1. 서론

원격의 제어와 반사 이론에 근거를 둔 원격 조정 장치

"Manipulator"는 R. Geertz에 의해 개발

1960년 이후 많은 분야에서 연구되어 지고 운용

되어지고 있다. 원격 재료로서의 원격 조정 장치의 필요성과 중요성이 대두되면서 미세한 조

정을 느끼기 위한 원격조종기술이 연구되고 있다. 이는

조종장치의 필요성과 중요성에 의한 계측의 구속을

의미한다. 원격조종장치는 작업자의 조종하는 마스터

시스템(Master system)과 원하는 작업을 수행하는

슬레이브 시스템(Slave system)이 있다. 이러한 원

격제어에서 중요시되는 것은 영상 정보

(Visualization information)와 근 감각적인 정보

(Kinesthetic information)이다. 영상정보의 발달은

작업자의 눈에 보이는 곳에서의 작업 수행에

서 카메라를 이용한 실시간 보니트리어에 의해 작업을

촬영하는 단계까지 이르렀다. 하지만 최근에 근 감

각적인 정보에 대한 중요성이 대두되면서 정확하고

정밀한 신호에 대한 처리가 필요하다. 또한, 그 신호

에 대한 조작인식에 대한 연구가 수행되고 있다.

미래 산업의 한 분야인 의료산업에서 기계장치

의 도입이 활발해지고 있다. 특히 수술용 원격 제

어장치의 필요성과 중요성이 대두되면서 미세한 조

정을 느끼기 위한 원격조종기술이 연구되고 있다. 이는

조종장치의 필요성과 중요성에 의한 계측의 구속을

의미한다. 원격조종장치는 작업자의 조종하는 마스터

시스템(Master system)과 원하는 작업을 수행하는

슬레이브 시스템(Slave system)이 있다. 이러한 원

격제어에서 중요시되는 것은 영상 정보

(Visualization information)와 근 감각적인 정보

(Kinesthetic information)이다. 영상정보의 발달은

작업자의 눈에 보이는 곳에서의 작업 수행에

서 카메라를 이용한 실시간 보니트리어에 의해 작업을

촬영하는 단계까지 이르렀다. 하지만 최근에 근 감

각적인 정보에 대한 중요성이 대두되면서 정확하고

정밀한 신호에 대한 처리가 필요하다. 또한, 그 신호

에 대한 조작인식에 대한 연구가 수행되고 있다.
는 외부에서 전기장을 가함으로써 유체의 전도도를 변화시킬 수 있는 지능형 액체로, 기존의 액체가 기존의 유체에 여려 번도만이 가려지는데 반해 전기장의 영향을 따라 여러 가지 정도로 변화하는 성질을 가지고 있다. ER유체의 기전적인 특성은 ER유체에 전기장이 가해지면 유체내의 일자들이 클러스터를 형성하여 결합한다. 이로 인해 흐름 전단 응력이 증가하면서 유동 저항이 증가한다. 전기장을 가하면 액체가 자유로이 이동하는 뉴턴야 인 유체(Newtonian fluid)상태이나, 전기장을 가해주면 유체 내에 분산된 액체가 전천히 구조로 형성되어 흐름 응력을 갖게 됨으로써 음유체(Bingham fluid)상태로 변하게 된다. 이러한 현상과 특성으로 인해 여러 분야에서 그 응용이 매우 다양하다.

따라서, 본 연구는 수술용 원격 시스템의 원격 수술에 대한 제약과 측면적 이슈에서부터 우해하게 전자 시스템(Master system)의 디지털 웹 시스템의 제어에 대한 이해를 바탕으로, 마스터 시스템의 원격 움직임을 제어하고자 한다. 원격 수술을 실시하는 의사들의 수술에 대한 경험이 상대적으로 적은 경우도 있지만, 현재의 의학적 예측에서는 원격수술에 대한 절차용을 이용한 수술에 대한 시술Torrent이 효과적으로 이루어지지 않고 있다. 이러한 문제의 해결책에 대한 혁신적인 해결책을 원격 수술 시스템에서 본다면 마스터 시스템(Master system)과 슬레이브 시스템(Slave system) 간의 상호작용적인 원격 수술을 통해 시술Torrent이 원활하게 이루어질 수 있다. 또한 원격 시스템의 한계로 인해 스마트 움직임 검출에 대한 제어 장치가 필요하다. 마스터 시스템의 원격 수술의 한계로 인해 소프트웨어 기반의 원격 수술의 한계를 극복하기 위해 기존의 원격 수술의 한계를 극복하는 것이 필요하다. 그러므로 시각적인 제어를 통해 원격 움직임을 제어하는 것은 필요하다. 즉, 그로써 시각적인 제어를 통해 원격 움직임을 제어하는 것은 요구된다.

\[
\Omega(s) = [Y(s)]T(s)
\]
\[
\Omega_m(s) = [Y_1(s) Y_2(s) Y_3(s)]T_m(s)
\]
\[
\Omega_s(s) = [Y_4(s) Y_5(s) Y_6(s)]T_s(s)
\]

\[
T_m(s) = \frac{1}{1} Y_4(s) \Omega_m(s) + \frac{1}{1} Y_6(s) \Omega_s(s)
\]
\[
T_s(s) = \frac{1}{Y_4(s)} Y_5(s) + \frac{1}{Y_6(s)} Y_6(s) Y_2(s) T_m(s) + \frac{1}{Y_4(s)} \Omega_s(s)
\]

\[
Y_m = \frac{1}{Y_4(s) Y_2(s)} (Y_4(s) Y_2(s) Y_4(s) Y_2(s))
\]

마스터 시스템의 원격 움직임을 제어하기 위한 원격 움직임을 제어하는 것은 요구된다.

2. Tele-Surgery 시스템

2.1 Tele-Surgery 기술

원격 수술 시스템을 실시하는 의사들의 수술에 대한 경험이 적은 경우도 있지만, 현재의 의학적 예측에서는 원격수술에 대한 절차용을 이용한 수술에 대한 시술Torrent이 효과적으로 이루어지지 않고 있다. 이러한 문제의 해결책에 대한 혁신적인 해결책을 원격 수술 시스템에서 본다면 마스터 시스템(Master system)과 슬레이브 시스템(Slave system) 간의 상호작용적인 원격 수술을 통해 시술Torrent이 원활하게 이루어질 수 있다. 또한 원격 시스템의 한계로 인해 소프트웨어 기반의 원격 수술의 한계를 극복하기 위해 기존의 원격 수술의 한계를 극복하는 것이 필요하다. 그로써 시각적인 제어를 통해 원격 움직임을 제어하는 것은 요구된다.

2.2 Tele-Surgery 시스템

양방향 원격 제어 시스템과 같이 복잡한 시스템은 전기, 전자, 기계, 생물학적 요소들의 복합적으로 이루어지게 된다. 이러한 결합 방법으로 간단하게 모델링되는 시스템은 각각 두 개의 포트로 가지는 전기 모델과 기계적 모델로 구성할 수 있다. 이러한 포트의 관계는 에포트 변수(트스크 T_m T_s)와 물로우 변수(속도 ω_m ω_s)이다.

본 시스템은 에포트 변수 관계에서 보아야 하며 물로우 변수의 관계는 다음과 같다.

3. 시스템의 구성

시스템의 구성 및 구동 원리는 다음과 같다.

1. 마스터 시스템을 구동원으로 하고 모터 제어를 통해 슬레이브 시스템을 구동시킨다.
2. 슬레이브 시스템의 구동에 대한 정보와 헤드(F/T sensor)에 대한 정보는 컴퓨터에서 처리하게 된다.
3. 익스텐드 모드(Extend mode)에서의 고전압 발전장치(High Voltage Power Supply)는 컴퓨터로 제어 가능하고, 신호의 변화에 대해 동작할 수 있다.
4. 신호의 변화에 따라 마스터 시스템의 감쇠부의 ER유체의 걸림을 제어할 수 있게 된다.
3.1 Slave System

슬레이브 시스템에서 느끼는 충격으로 인한 토크는 회전에 대한 정보로 다음과 같다.

\[T_s = F_s L_s \]

(6)

여기서 \(F_s \)는 센서에서 느끼는 충격량이고, \(L_s \)는 슬레이브 시스템의 회전 반경이다.

3.2 Master System

슬레이브 시스템의 정보와 더불어 마스터 시스템의 회전은 다음과 같이 표현되어 진다.

\[T_m = F_m L_m \]

(7)

마스터 시스템에서 정기장의 인가로 인한 ER유체의 특성을 고려하면 다음과 같다.

\[T_{er}(t) = (\eta \frac{du}{dy} + a \dot{e}(t))^2 \cdot A L_m = \]

(8)

여기서 \(\eta \)는 ER유체의 격경계수이고, \(E(t) \)는 고전압 발생장치에 가해지는 정기장의 변화이다. \(A \)는 ER유체가 있는 부분의 면적이고, \(L_m \)는 마스터 암의 회전 반경이다. \(\alpha, \beta \)는 ER유체 조성에 사용된 음의 크기와 형상, 중량비, 온도에 변화하는 고유치이다. 또한 본 연구에서 사용된 제어기는 PID제어기를 사용하였으며 관게식은 다음과 같다.

\[K_{pid} = K_p e_{se} + K_i \int e_{se} dt + K_d e_{se} \]

(9)

본 실험에서 사용된 ER유체는 일본 BRIDGESTONE사에서 제작된 마이크로 분산형 ER유체이다. 이 분산형 ER유체는 적정이 수 \(\mu \)밀리어단자가 분산되어 유체의 작동영역에서 안정성이 탁월하며 점도는 25(°C)에서 93(mPa·s)이다.

![Fig. 2 Electric field-Shear stress relationship](image)

Fig. 2 Electric field-Shear stress relationship

이 유체에서 정기장의 절기와 전단 음력의 관계를 수식으로 표현하면 다음과 같다.

\[\tau = \eta \frac{du}{dy} + \tau_s(E) \]

(10)

\(\tau_s(E) \)는 실험으로 인해 다음과 같이 쓰 수 있다.

\[\tau_s(E) = aE^2 = 10.365E \]

4. 시뮬레이션 및 고찰

마스터-슬레이브 시스템의 성능을 평가하기 위한 시스템의 원리는 회전형 레오메터로 구성하였다. 회전형 레오메터는 시스템의 특성상 공구와 원통형(Coaxial cylinders[Couette type])을 이용하였으며 실험사의 성능을 평가하기 위해 토크메터(Torque meter)를 이용하였다. 여기서 ER효과의 저울에 관한 논의는 내외부 원통형에 대한 구동과 피동의 관계에 있다. 따라서 성능을 고려한다면 내부 원통을 피동축으로 하고 외부 원통을 구동축으로 시스템을 구성하는 것보다 성능의 향상을 위해 내부 원통을 구동기로 하고 외부 원통을 피동축으로 써서 그 성능이 우수하다.

활 발생 장치에서 근 감각적 정보는 많은 축력 제한 장치의 개발에 기여하고 있다. 인간의 손은 0.2 N/m²이상의 압력과 0.5 N 이상의 형의 변화가 있어야만 느낄 수 있다. 또한 인간이 느끼는 축력의 공간 편도 범위는 11 mm²~101 mm²이다. 본 연구 또한 이러한 미세한 형 축력에 대한 명확한 변화를 감지해야 한다. 따라서 낮은 토크 변화에 대한 축력 감지 방법에 대해서 제어기의 설계, 파라미터(Parameter)의 선정, 낮은 전압에 대한 ER유체의 거동에 대한 명확한 유동 특성을 고려하여야 한다.

활 발생의 정보를 랜덤으로 보고 알림을 주었을 때 축력 신호가 그래프로 균일하게 분산된 신호를 검출할 수가 있다. Fig. 3은 일반의 음력 랜덤 함수이고, Fig. 4는 ER유체의 거동에 따른 음력 신호이다. PID 제어기 등을 통한 축력신호는 음력 신호소를 추정하게 되는데 본 실험에 따른 에러검출 신호가 Fig. 5이다.

![Fig 3. Reference input (Random function)](image)
서 합량과 제로의 근간에 활용해 연구가 진행되고 있는 초정밀 로봇을 이용한 시스템에 대한 연구와 마스터 암의 감쇠력을 설정에 대한 정확한 제어를 위해 ER유체의 기동에 관한 연구가 정량적 모델링 작업에 관한 연구를 필요로 하고 있다.

참고문헌

5. 송세경, 김완수, 김동수, 조형석 "머신수술용 메니플레이터의 개발에 관한 실용적 연구 및 시스템 개발에 관한 연구," 한국정밀공학회, 제15권, 제10호, pp. 81-87, 1998

5. 결론

본 연구는 원격 제어 시스템의 마스터 암의 감쇠력을 설계하여 구조의 단순화, 성형화 문제의 해없음을 제시하였다. 특히 원격 수술에 대해서는 미세한 원반에 대해 큰 감각적인 정보는 매우 중요하므로 정밀하고 정확한 정보가 요구되고 있다. 이러한 관점에서 고도로 환경된 의사와 같은 심리적인 도움이 필요하다. 따라서