Singularity Analysis of a Cubic Parallel Manipulator

T. J. Jung(Graduate School, Korea Univ.), W. C. Choi, J.-B. Song, D. Hong(Korea Univ.)

ABSTRACT

Singular points are those at which the determinant of a Jacobian matrix is zero. A parallel manipulator gains mostly an extra DOF at the singular points, where it can not be properly controlled. In this study, singular points of a cubic parallel manipulator are illustrated by obtaining the determinant of a Jacobian matrix mathematically, and the singular points of the manipulator are found to be three separate planes in a 3D space. The dependency among links for each singular point is determined by applying linear algebra. Also, the singular points and workspace of the cubic parallel manipulator are plotted to check if the workspace contain singular points.

Key Words . Parallel Manipulator(병렬기구), Singularity(특이점), Jacobian(자코비안), Workspace(작업공간), Linear Algebra(선형대수).

1. 서론

병렬기구는 기존의 주로 사용되던 개로프 구조의 적절기구와 달리, 복수의 링크가, 움직이는 물러움과 고정된 베이스를 연결시키는 개로프 구조를 취하므로, 적절기구에 비해 강성이 크고 정밀도가 높으며 고속을 얻을 수 있다. 반면, 병렬기구는 작업 공간이 적절기구에 비해 감소하고, 작업공간의 경계 에서만 특이점을 가진 적절기구와의 달리 내부에서 특이점이 생길 수 있다. 이러한 작업공간의 내부에 생기는 특이점은 적절기구의 특이점과는 반대로 기구의 자유도를 증가시키므로 이 위치에서 기구의 역할을 바꾸지 못하고 제어가 불가능한 상태가 된다. 따라서 병렬기구에서 특이점의 위치를 파악하는 것은 매우 중요하다.

본 연구에서는 육면형 병렬기구의 자코비안 행렬을 구하여 행렬식을 연고, 행렬식을 0으로 하는 공간의 위치가 기구의 특이점이 되므로, 그 위치를 도시함으로써 특이점을 확인할 수 있고, 특이점을 나타내는 위치는 수학적 해석적으로 구여질 수 있다. 그러므로, 특이점을 나타내는 각각의 위치가 어떤 링크들 간의 위치상에 대해 주어지는지를 선형대수 수용하여 확인한다.

2. 병렬기구의 특이점

병렬기구에서 특이점은 관절 좌표공간에서 설계 장치 좌표공간으로의 변환을 수행하는 자코비안 행렬의 특이행렬이 되어 행렬식의 값이 0이 될 때 발생한다. 자코비안 행렬을 J라고 하면,

\[
J = \begin{bmatrix}
 s_1^T (s_1 \times P_1)^T \\
 s_2^T (s_2 \times P_2)^T \\
 s_3^T (s_3 \times P_3)^T \\
 s_4^T (s_4 \times P_4)^T \\
 s_5^T (s_5 \times P_5)^T \\
 s_6^T (s_6 \times P_6)^T
\end{bmatrix}
\] (1)
가 된다. 여기서 s는 각 링크의 단위방향벡터이고, P는 베이스 좌표계 원점으로부터 각 링크의 플랫폼 측 점점으로의 벡터이다. 자료비안 행렬의 행들은 각 링크의 플랫폼 좌표계로 이뤄져 있기 때문에 링크들이 선형 독립이 되어야만, 자료비안 행렬이 독
이행렬이 되지 않고 역행렬이 존재함을 알 수 있다.

자료비안 행렬의 행렬식은 일반적으로 매우 복잡하므로 직접 구하기가 쉽지 않으나 Mathematica를 사용하여 행렬을 수식으로 구해내는 것이 가능하
다. 기구의 회전행렬이나 변전행렬 등에 어느 하나
을 고정시킨 경우, 자료비안 행렬은 행렬이나 회전
에 관한 제계의 미지수로 표현된다. 이 행렬의 행렬
식을 구하면, 일반적으로 이들 미지수에 관한 3차식
이 나타난다. 만약 회전행렬을 고정시킨 경우라면,
이 3차식은 공간에서 포토이 되고 이것은 그 기구의
입장자세 캐드공간에서의 특이점의 위치를 나타낸다.

특이점을 구할 때 설계변수들은 모두 미지수로
놓고 해석하는 것은 거의 불가능하다. 따라서, 본
연구에서는 역행렬 변형기구의 설계변수들을 적용하여 이 기구에 대한 특이점의 공간 상의 위치들과 이들
위치의 의미를 링크들 간의 상호 외존성과 연관시켜
파악한다.

3. 역행렬 변형기구의 특이점

Fig. 1에 속행렬 변형기구를 보여준다.

Fig. 1 Schematic of the Cubic
Parallel Manipulator.

해석에 사용된 각 조인트의 위치는 다음과 같다.
특이점의 위치는 링크의 상호 의존성과 관련되는
데 같은 평면상의 점들 간에는 유사한 링크의 의존성
이 발견될 것임을 쉽게 추론할 수 있다. 각 평면의
링크의 특성을 찾기 위하여 식 (4)에서 주어지는
세 개의 평면식을 \(z\)에 관해 정리한 후, 이를 각각 식
(5)에 대입하면 \(x, y\)에 관한 점의 방정식이 얻어진다.
이 점의 방정식은 특이점행이 되고, 따라서
링크의 폴리가 좌표로 이뤄진 6개의 행 벡터는 선형
독립이 되지 못한다. 그러므로 이들 6개 행 벡터의
일부의 선형 조합만으로 \(0\)이 되면, 이행 행해 다양하
는 평면간에 의존성이 있는 것이다.

식 (4)을 0으로 하여 세 평면의 식은 각각 다음과 같다.

\[
177x - 182y + 9912 - 177z = 0 \\
56x - z = 0 \\
-56 + z = 0
\]

(5)
(6)
(7)

한편, 식 (3)의 1-6행에 차례로 스칼라 \(a, b, c, d, e, f\) 를 곱한 후 더하여 만든 벡터의 \(V\)라고 하면 \(V\)는,

\[
\begin{vmatrix}
177 & -182 & 9912 & 177 \\
56 & -1 & 0 \\
-56 & 0 & 1
\end{vmatrix}
\]

이 된다. 식 (8)에 식 (5)를 \(z\)에 관해 풀어 대입하면

\[
\begin{vmatrix}
177 & -182 & 9912 & 177 \\
56 & -1 & 0 \\
-56 & 0 & 1
\end{vmatrix}
\]

이 된다. 여기서 \(c\)와 \(f\)가 0이므로 식 (6)에 의해 주어
지는 평면은 1, 2, 5, 6 번 링크 간의 의존성을 의미
함을 알 수 있다. 링크 번호는 Fig. 1에 표시된 폴림
번호와 일치한다. 식 (11)의 \(x, y\)에 관한 조건은 식
(6)과 식 (5), 식 (6)과 식 (7)의 교선 위의 점들에서는
식 (11)가 나타내는 링크 의존성이 설명되지 않음을
의미한다. 이들 교선에서는 식 (11)과 다른 링크의
존성이 나타난다.

식 (8)에 식 (7)을 \(z\)에 관해 정리하여 대입한 경우
도 앞서와 마찬가지로 하여 \(a\)의 값을 구하면,

\[
\begin{vmatrix}
177 & -182 & 9912 & 177 \\
56 & -1 & 0 \\
-56 & 0 & 1
\end{vmatrix}
\]

이 된다. 여기서 \(c\)와 \(f\)가 0이므로 식 (7)에 의해 주어
지는 평면은 1-3 링크 간의 의존성을 나타내는 것을 알 수
있다. 식 (12)의 \(x, y\)에 관한 조건은 식 (10), 식 (11)과
는 달리 그 의미를 파악하기 어렵다. 단, 식 (7)의 평
면식을 점의 방정식 한 더하여 만든 벡터를 \(V\)라고 하면
식 (7)의 \(z\) 방향 성분이 모두 \(0\)이 되고, 이것은 폴림의 외부에 위치한 행해 의미한다.
실제 상황에서는 이런 형태가 되기 전에 작업
공간의 한계에 도달하므로 식 (7)의 특이 평면은 어
면 경우라도 작업 공간 외부에 위치하여 큰 의미를
갖지 못한다.
식 (5)와 식 (6)의 특이 평면은 작업공간 내부의
지말 가능성이 있다. 앞서 언급했듯이 작업공간 내에
특이점이 존재하다면, 기구의 제어가 어려워지므로, 설계시
특이점의 위치를 작업공간 밖으로 하는 것이 중요하고, 이는 설계변수를 변경함으로써 가능하다.

Fig. 3과 Fig. 4는 회전행렬이 함정행렬인 일정자세작업공간과 특이점의 위치를 각각 z=400 mm와
z=430 mm인 위치에서 보여준다. 몽금 전 영역이 작업공간이고, 두 개의 직선이 특이점이다. 이 그림들로부터
특이점이 작업공간을 벗어나 있음을 알 수 있다.

행렬을 구성할 수 있고, 이 행렬의 행렬식을 구하여
특이점을 위치를 파악할 수 있다.
- 육면형 병렬기구의 일정자세 작업공간에 대한
특이점은 병진운동의 경우 3개의 평면으로 주어
지고 이들 평면 위의 점들은 동일한 링크의존
성을 갖는다.
- 병렬기구의 설계 시 특이점의 위치가 작업공간
을 지나도록 설계 변수를 선정하여야 한다.

주의
본 연구는 한국과학예산 특성기초(과제번호, 1999-1304-003-3)에 의해 지원을 받아 이루어졌으며,
이에 관계자 여러분께 감사드립니다.

참고문헌

4. 결론

일반적인 병렬기구와 고안된 육면형 병렬기구에
대한 특이점 해석을 수행한 결과 다음의 결론을 얻는다.
- 병렬기구의 설계 시 설계 변수를 통해 자코비안