다구체 방법을 이용한 다발압출 금형설계에 관한 연구
조성진 (인하대 대학원 자동화공학과), 이재원 (인하대 기계공학부)


ABSTRACT

This paper deals with a study on the development of multi-hole extrusion die set using Taguchi method. We design the Taguchi experiment using the knowledge acquired from domain experts and related documents. Attribute characteristic is employed to estimate defects, the quality characteristic that cannot be measured on a continuous scale. Cumulative probability distribution is transformed to calculate S/N ratio. Using Taguchi method, we considerably improved the productivity of multi-hole extrusion process, as well as we showed usefulness of Taguchi method in plastic deformation process design.

Key Words : Taguchi method (다구체 방법), Extrusion (압출), Die set (금형), Welding electrode (용접부)

1. 서론

소성가공은 금속재료의 비 절삭가공 중 대표적인 것으로, 높은 생산성과 급한 품질을 얻을 수 있어 많이 사용되는 방법이다. 그러나 소성가공은 변형의 결과를 예측하기 어렵기 때문에 가공에 사용되는 금형을 비롯한 공정의 설계가 가장 어려운 재료가공법 중 하나이다. 공학자들은 소성가공의 효과적인 공정설계를 위해 다양한 방법을 시도해 왔다. 그 중 대표적인 것이 유한요소해석을 이용한 소성변형의 예측이다. Iwata(1)이나 Wang(2)의 연구가 그 예가 되었다. 조성진(3)이나 박상홍(4) 등은 소성가공의 공정설계에 전문가시스템을 이용하였 다. 유한요소해석과 전문가시스템은 소성가공의 공정설계에 나름대로 기여했다고 할 수 있다. 그러나 이 방법들은 설비구입이나 시스템 개발에 비용이 많이 들며 결과 또한 설계와 차이가 나는 단점을 가지고 있다. 자금력이나 기술력이 충분치 못한 국내 소기업의 경우 대부분 현장 전문가의 경험과 감각을 바탕으로 설계방법을 통한 설계를 반복함으로써 금형변수를 결정하는 방법을 쓰고 있다. 그러나 좌측회차, 좌측회차를 늘려서는 급한 수준비를 대부분이며 납기 대에 원하는 품질에 도달 하지 못하는 경우도 종종 일어난다. 다구체 방법은 연구개발 능력이 열악한 중소기업의 상황에 맞는 공정설계 도구로 활용할 만한 대안이 될 수 있다. 김동환(5)과 김영석(6) 등은 소성가공의 공정설계에 다구체 방법을 적용할 수 있음을 보여주었다. 본 연구에서는 다구체 방법을 이용하여 용접용 생산을 위 한 다발압출 공정을 설계하였다.

2. 이론적 배경

2.1 다구체 방법

공학적인 설계는 혼히 안전한 설계의 수용수준을 정의하고, 최적의 값을 결정하는 행위로 볼 수 있다. 이러한 값을 결정하기 위해서 여러 가지 이론적 수식, 경험이적 지식 등이 사용되며, 실제 혹은 컴퓨터모델(simulation)에 의한 실험도 널리 이용된다. 통상적인 실험은 시행착오에 근거하여 보통 몇 년에 한 번의 변화와 최적화를 고려하기 때문에 설계를 완성하기 위해서 많은 시간과 비용을 필요로 하며, 종종 최적화에 실패한다. 결과적으로 생산자는 소비자에게 불편한 제품을 비싸게 공급할 수 밖에 없고, 경쟁력을 잃게 된다. 혼히 ‘강건설계’라고 불리는 다구체 방법은 체계적으로
호용적인 희석화 방법으로 적은 실험 횟수로 여러 개의 설계변수를 연구할 수 있다. 다구체 방법에서 는 직교배열(orthogonal array)이라는 수학적 방법과 신호 대 잡음비(signal to noise ratio, S/N ratio)라는 새로운 통계학 개념을 이용하여 다양한 사례현황에 서 원하는 평점율을 유지할 수 있는 제품이나 생산공정을 설계할 수 있다. 다구체 방법이 1980년대 이 후 미국으로 전파되면서 유수의 기업들이 이 방법을 이용한 복잡한 설계를 이루었으며, 다구체 방법은 전 세계적으로 가장 유용한 품질도구 중 하나로 널리 사용되어 오고 있다(7)(9).

다구체 방법의 수행절차는 각각에 따라 약간의 차이가 있다. 본 연구에서는 Phadke가 제안한 다음의 절차에 따라 실행을 수행하였다.

### 실험계획
- 주요기능, 부작용, 기능상실의 유형 정리
- 잡음인자와 시험조건 결정
- 품질특성과 목적함수의 결정
- 제어인자와 그 수준의 결정
- 혼합실험의 설계와 결과분석과정의 결정

### 실험수행
- 실험 및 결과측정
- 설계 및 조사결과

**실험결과 분석**
- 최적조건의 결정과 결과추정
- 확인실험의 수행 및 다음 조치 계획

![Fig 1 Multi-hole extrusion process](image)

Fig. 1 Multi-hole extrusion process

![Fig. 2 Multi-hole extrusion die set](image)

Fig. 2 Multi-hole extrusion die set

### 2.2 다발압출 기공
암출은 일관 가공의 하나로 Fig. 1과 같이 제료를 금형 속에서 압출하여 구멍을 통하여 제료가 빠져 나오게 함으로서 원하는 형태로 만드는 기공법이다. 압출가공의 공정설계는 크게 압출공정(Fig. 2)의 설계와 공정변수(길이, 온도, 압출속도)의 결정으로 나눌 수 있다(10)(12). 본 연구에서는 금형설계 부분을 다루고 있다.

### 3. 다발압출공정 설계를 위한 다구체 실험

#### 3.1 다구체 실험설계
본 절에서는 2.1절에서 소개한 다구체 방법의 수행절차에 따른 실험계획을 기록하였다. 실험계획에 이용된 지식은 인천소재 S 중소기업의 현장설문 가와 인터뷰와 관련 문헌(13)(15)을 통하여 획득하였다.

#### 3.1.1 주요기능, 부작용, 기능상실의 유형정리
유압봉 압출 공정의 주요기능은 연속압출이 가능해야 한다는 것이다. 다발압출공정은 단 별입
의 제료가 거의 다 압출되면 다른 별입을 장업하여 압출공정을 계속 진행한다. 없애 압출된 와이어(wire)가 길어지지 않아야 한다(Fig. 1 참조). 또한 압출된 와이어는 3차로 인한 drawing) 가공을 거치게 되는데 이를 위한 적절한 인장강도 및 전단강도를 유지해야 한다.
부작용 및 기능상실로는 압출제품 내, 외부의 결함이나 불순물포함, 2차 인장 시 끌어지는 현상 등을 들 수 있다.

#### 3.1.2 잡음인자와 시험조건의 결정
여러 가지 잡음인자가 있지만 그 중 슬리브(sleeve) 온도와 가열된 별입이 공기 중에 노출되는 시간을 주요 잡음인자로 선정하였다.
시험조건으로 1 실험 당 490 ℃로 가열된 20 개의 별입을 장업하며, 슬리브 온도는 450 ℃로, 외어 속도는 14 m/min으로 설정하였다.

#### 3.1.3 품질특성과 목적함수의 결정
품질특성으로는 유압봉의 가장 중요한 특성이라 할 수 있는 내, 외부의 결함을 설정하였다. 결함의 정도를 정량적으로 나타내기 위해 이들 손작
적 변주형문제로 보아 약, 보통, 불량의 3등급을 나누었으며, 현장전문가와 용인으로 등급을 판단하도록 하였다(8).

목적함수로는 무적변수에 의한 확률분포를 사용하였다.
3.1.4 제어인자와 그 수준
현장 전문가와의 인터뷰와 관련문헌을 참고로 Table 1과 같이 제어인자와 그 수준을 결정하였다. 단위는 밀리미터(mm)와 도(degree)이며, 밑 줄은 기존 수준을 나타낸다. 각 인자들은 앞에서 다이 각 부분의 치수이며, Fig. 3에 도시된 바와 같다.

<table>
<thead>
<tr>
<th>기호</th>
<th>인자</th>
<th>의미</th>
<th>수준</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>R_c</td>
<td>콘(Cone) 절면반경</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>S</td>
<td>다이중심-다이홀터 중심거리</td>
<td>22</td>
</tr>
<tr>
<td>C</td>
<td>R</td>
<td>다이 아께 반경</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>L</td>
<td>랜드(land) 길이</td>
<td>0.5</td>
</tr>
<tr>
<td>E</td>
<td>θ</td>
<td>콘 기울기</td>
<td>65</td>
</tr>
<tr>
<td>F</td>
<td>φ_e</td>
<td>콘 하단직경</td>
<td>16</td>
</tr>
</tbody>
</table>

Fig. 3 Control factors depicted in die set

3.1.5 행렬실험의 설계
Table 1과 같이 추출된 제어인자의 개수와 수준 수를 고려해 볼 때, 교호작용을 고려하지 않은 자유도는 12이다. 본 연구에서는 다구체가 제안한 표준적병법을 적용하여 가장 적합한 L_{16} 적병법을 사용하였다.

3.2 실험 및 결과측정
현장 전문가의 협의를 통해 압출된 와이어에서 빌렛과 빌렛이 이어지는 이음매 부분 중 5 번째를 기준으로 앞뒤로 L/2(L은 한 개의 빌렛을 압출한 와이어의 길이)만큼 잘라낸 총 길이 L의 구간을 측정대상으로 하였다. 한 다이에서 압출되는 6가닥의 와이어에서 해당 부분을 모두 모아 4등분하여 압, 보통, 불량을 관찰하여 각각의 횟수를 기록하였다.

3.3 결과분석 및 확인실험
측정된 각 인자별 압, 보통, 불량의 관측 수치 누적하여 확률분포로 나타내면 Fig. 4와 같다. 압력이 높을수록 실험 후 압호가 관찰될 확률이 0.72이고 보통이상이 관찰될 확률이 0.92로 나타났다. 2. 수준일 때 압호가 관찰될 확률이 0.24이고 보통이상이 관찰될 확률은 0.82로 나타났는데 이는 1 수준이 2 수준보다 더 높은 품질이 관측될 확률이 높아 더 좋은 수준임을 나타낸다.

Fig. 4 Result analysis using cumulative probability distribution
또한, 여기서 수준에 따라 그레프가 큰 차 이를 보이는 인자는 품질에 영향을 많이 주는
인자임을 나타낸다. 누적환량분포를 관찰하여 각
인자의 최적수준을 판별한 결과 최적성자
조합은 A1B1D1F1이 된다. C와 E는 품질에 미
치는 영향이 미미하기 때문에 비중이 적게 드
는 것을 선택하면 된다.

이제 최적조건에서의 품질을 추정하기 위
해 양호와 보통이 관찰될 확률을 오메가 변환
(Omega 혹은 logit 변환)과 역 오메가 변환을
이용하여 계산하면 Fig. 5와 같은 결과가 나온
d다. 오메가 변환은 불량근무 문제에서 S/N 비
와 같다. 결과를 살펴보면 최적조건에서는
양호이상이 관찰될 확률이 0.75로 기존의 0.33
에 비해 높고, 보통이상이 관찰될 확률도 0.95
로 높아 품질적으로 품질이 개선되었음을 보
여준다. 이는 확인실험 통해서도 거의 근사
하게 맞아 떨어지고 있는데, 이는 최적조건의
추정이 타당했음을 보여준다.

Fig 5 Best combination of control factor levels

4. 결론

본 연구에서는 용접관 생산을 위한 다발압출공
정의 설계에 다구체 방법을 적용하였다. 본 연구를
통하여 다발압출공정의 품질과 생산성을 크게 개선
할 수 있었으며, 소성각관의 공정설계를 위해 지금까
지 제도된 여러 방법 중 다구체 방법이 중소기업의
설계에 맞는 경제적이고 효과적인 도구임을 확인할
수 있었다.

다구체 방법이 중소기업의 기술향상에 유용한
도구임에도 불구하고 국내 중소기업에 그 보급이
아직 충분히 이루어지지 못한 것은 매우 안타까운
일이다. 본 연구를 진행하면서 현장전문가와 토의
를 통해 관계기관과 교육기관, 산업체가 다구체 방
법의 활성화에 공동으로 노력해야 한다는 논의
같이 하였다.

향후 미세조정실험과 압출조건을 포함한 다구체
설정을 통해 다발압출공정의 생산성과 품질을 더욱
높일 수 있을 것으로 기대된다.

참고문헌

1. Iwata, N., M. Masao, and G. Manabu, “Finite-
Element Simulation of Deformation and Breakage in
Sheet Metal Forming,” JSME International Journal
of deep-drawing process,” Journal of Material
Processing Technology Vol 48, No. 1-4, pp.123–127,
1995.
3. 조성진, 이재원, “Deep Drawing 공정설계 전문
가시스템 DOX 의 개발에 관한 연구,” 한국전문
4. 박상봉, “전자공 전극 가공전용 프로그래시
旗舰 설계 전문가시스템,” 한국 CAD/CAM 학회
5. 김동환, 김동문, 교대철, 김병민, 최재호, “가공
성에 고려한 단계적 공정설계의 예비설계형
설계방법: 다구체 방향을 이용한 신경망의 적
응,” 대한기계학회논문집, Vol. 22, No. 9, pp.1615-
1624; 1998.
6. 김영석, 하태호, 한수식, “다구체 적합방법을
이용한 형질변형률 관찰실험용 균형의 예비설
계,” 대한기계학회논문집. Transactions of the
7. Fowlkes, W. Y. and C. M. Creveling, Engineering
Methods for Robust Product Design: Using Taguchi
Methods in Technology and Product Development,
Addison-Wesley, 1995.
Addison-Wesley, 1993.
9. Phadke, M. S., Quality Engineering using Robust
of the process variables in unsymmetrical single-hole
and multi-hole extrusion processes,” Journal of
Materials Processing Technology, Vol. 73, Issues 1-3,
11. 장명순, 손영환, 기계공학작, 문윤당, pp.208-218,
1997.
12. 김낙수, 임용택, 진종택, 공업계료가공학, 반도출