Manufacture of Lapping Wheel for Electrolytic Dressing and Evaluation of Electrolytic Characteristics

J. Y. Choi (Pusan Univ. Grad), E. S. Lee (Inha Univ.), J. B. Song (Pusan Univ.)

ABSTRACT

Application of ceramics, carbide, ferrite has grown considerably due to significant improvement in their mechanical properties such as light weight, chemical stability, super wear resistance and electronical. Despite these characters, the use of advanced material has not increased because of poor machinability. The method of using of metal bond wheel was proposed. But it is difficult that metal bond wheel can be dressed. Recently, the technology of in-process electrolytic dressing is developed to solve this problem. This method need wheel for electrolytic dressing, power supply and electrolyte. But development of wheel for electrolytic dressing is the most need. The aim of this study is development of wheel for electrolytic and appraisement of CIB-diamond lapping wheel

Key Words: advanced material, In-process Electrolytic, CIB-diamond lapping wheel

1. 서론

현재 전기 전자 우주 관련 산업이 발달됨에 따라 보다 극한적인 환경 조건에서도 뛰어난 내열성, 내식성, 기계적 강도, 전자기적 특성을 가지며 커스터미의 정밀도가 좋은 재료가 각광을 받고 있다.

이러한 재료에는 세라믹스를 비롯하여 조립함 금, 페라이트제가 있으며 이러한 재료의 특성을 난작성과 취성이 높다는 것이다. 그러므로 이러한 점 단 난작성을 효율적으로 가공하기 위한 공구가 필요하게 되었고 그 중에서도 메탈 본드 습도의 이용이 필요하게 될 수 있게 되었다. (1)

메탈 본드 습도는 렛>Lorem, 비트리파이어즈 결합재로 제작된 휠에 비해 고강성, 자기 윤활성을 가지며 연삭비가 현저히 높지만 이러한 메탈 본드 습도의 이용에 있어서 가장 큰 문제는 드레싱의 어려움이다. 따라서 최근에는 이러한 문제를 해결하기 위해서 연속 외장 드레싱 기술이 개발되었다. (2)(3)

그러나 이러한 연속 외장 드레싱을 안정적으로 적용하기 위해서는 크게 3가지 요소가 필요하다.
2. 전체 드레싱용 메탈본드 래핑 습도의 제작

전체 드레싱용 메탈본드 습도를 제작하기 위해서는 결합체와 다이아몬드 입자 그리고 기계-화학적 작용의 입자를 함께 섞은 후 금형에 중전 시킨 후 750℃, 2 ton/ cm²로 가압 성형하여 소결 시켰다.

전도성 본드를 이용하여 무작 시간 후 드레싱을 하여 완성하였다. Fig.1은 전체드레싱용 래핑 습도 제작 과정을 나타내었다.

그리고 Fig.3은 성분비를 다르게 하여 제작되어진 지석을 도전성 접합체를 이용하여 무작시간 전체드레싱용 메탈본드 다이아몬드 습도이다.

Fig.3 Metal bonded diamond wheel of electrolytic dressing

3. 연속 전체 드레싱 래핑의 원리

약전도성 전해액에 의한 전체 드레싱에 연속성용을 부여함으로써 초기 습도를 안정적으로 가공에 이용할 수 있는 드레싱 방법을 연속 전체 드레싱(In-Process Electrolytic Dressing)이라고 한다.

Fig.4는 연속 전체 드레싱 래핑법의 메카니즘을 나타낸 것으로서 미세한 다이아몬드 연마재를 가진 메탈본드 습도들은 트루잉 작업 후에는 연마재와 결합체는 평탄화 되며(①) 연마재가 절단된다.

그래서 초기 전체 드레싱을 통하여 결합체를 용출하여 연마재를 동출시킨다.(②)

이 전체연산에서는 래핑 습도의 결합체가 수 μm 용출한 후 빠르게 부도체 피막(수산화철, 산화철 등)에 의한 절연층이 해평 습도 표면에 형성되고 파도한 용출은 방지된다.(③)

그리고 래핑을 시작하기 전 공작물이 이 부도체 피막과 접촉하여 연마재가 마멸된 분말만을 피막이 벗겨진다(④). 이렇게 되면 피막에 의한 절연이 지하되고 또다시 결합체가 필요한 양만큼 용출되어 연마재의 동출이 유지된다.(⑤)

이 절이 상태(연속 전체 드레싱 사이클)에 의해 다시 새로운 연마재가 동출 되어져 안정된 가공이 진행된다. 이러한 연속 전체 드레싱 래핑의 자율적인 제어 기능에 의해 초정밀의 가공이 유지된다.
Fig. 4 Mechanism of IED lapping

4. 실험 장치 및 방법

[Power Supply]

Fig. 5 Schematic drawing of In-Process
Dressing lapping experimental setup

Fig. 5는 본 실험장치의 구성도를 나타낸 것이다.
성분비가 다르게 제작 되어진 메탈 본드 다이아몬드 레핑 습률은 일반 레핑기에 장착을 한다.
전원 공급 장치의 양극은 흑연 브러지를 사용하여 레핑 습률에 전압하고, 음극은 전극에 장착하고
레핑 습률 표면과 전극사이를 0.4mm로 유지하고 이 사이로 전해력을 공급하여 전해형상을 발생시켰다.

Table 1은 제작되었던 메탈본드 다이아몬드 레핑 습률의 성분비를 나타내었다.

Table 1 Composition of Metal bonded diamond pellet

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>성분</td>
<td>B(100%) D(cons.100)</td>
<td>B(87.5%) C(12.5%) D(cons.100)</td>
<td>B(75%) C(25%) D(cons.100)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>성분</td>
<td>B(62.5%) C(37.5%) D(cons.100)</td>
<td>B(50%) C(50%) D(cons.100)</td>
<td>CB(100%) D(cons.100)</td>
</tr>
</tbody>
</table>

Table 2은 본 실험 전체에 사용된 시스템의 사양을 나타낸 것이다. 이 실험에서 사용된 전극은
래핑슬롯 크기의 1/8크기로 구리로 제작되었고, 연속 전기 드레성을 위한 전원은 폴스 유지, 유지 시간
(\(r_{on/off}\))을 10 \(\mu s\)로 하고 전압은 최대 90V 까지이며 Ip 값은 0-19A 사이에 조정이 가능하다. 전극
과 습류의 간격은 간극계이지(Gap Gage)를 사용하여 0.4mm를 유지시켰으며 트루업을 시킨 후 멀로
회석시킨 전해액을 사용하여 폴크전류(Ip)를 10A 폴스 유지, 유지 시간(\(r_{on/off}\))을 10 \(\mu s\)로 조기 드레
성을 60분 동안 실시하였다.

실험은 초기 전기 드레성을 시킨 후 표면 사전을 적은 후 3주동안 공기중에 방치한 후 표면 사
전을 적어 표면의 변화 상태를 관찰하였다.

5. 실험 결과

Fig. 6은 초기 전기드레성을 시킨 후 각각의 전기
드레성을 레핑 저식의 표면을 공구 현미경을 이용하
여 200배 확대하여 적은 사진이다.

1번 시편

2번 시편
그림에서 보듯이 1,2번 시편은 전해 현상이 일어나지 않아 연마 마모의 증가가 되지 않기 때문에 연속 전해 드레싱용 레밍 숫자는 부적합하며 5,6번 시편은 빨리 석화되어 초기 전해드레싱을 마친 후 두터운 층이 생성된 석화막에 의해 연마 임자가 덜어지거나 용출되었다.

이는 숫자의 빨른 마모를 가져오므로 좋지 않다. 시편 3,4번이 초기 전해 드레싱시 가장 알맞게 연마 임자가 표출되었다.

Fig.7은 3주 후 전해드레싱용 레밍 숫자의 표면을 찍은 사진이다. 이는 가공 후 진행되는 표면의 석화 상태를 알아보는 것으로 표면에 부피 태양이 생성되면 숫자 표면에 더 이상의 석화가 진행되지 않아 표면이 안정화되어 언제든지 숫자의 제 사용이 가능하게 한다.

6. 결론

본 연구에서는 연속 전해드레싱용 메탈본드 다이아몬드 레밍 숫자를 제작하여 성분비에 따른 지석의 전해특성을 관찰하여 다음과 같은 결과를 얻었다.

(1) 성분비가 다르게 제작되어진 메달 본드 지석은 전해시 서로 다른 전해 현상을 보여주었다.

(2) 제작 되어진 지석 중 결합체(75%), 기계화학적 임자(25%)를 혼합하여 제작한 지석이 연속 전해 드레싱용 레밍 씽에 가장 맞합은 비율이다.

7. 참고 문헌

