Learning Generative Models with the Up-Propagation Algorithm

Jong-Hoon Oh and H. Sebastian Seung
Bell Labs, Lucent Technologies
Murray Hill, NJ 07974

Abstract

Up-propagation is an algorithm for inverting and learning neural network generative models. Sensory input is processed by inverting a model that generates patterns from hidden variables using top-down connections. The inversion process is iterative, utilizing a negative feedback loop that depends on an error signal propagated by bottom-up connections. The error signal is also used to learn the generative model from examples. The algorithm is benchmarked against principal component analysis in experiments on images of handwritten digits.

In his doctrine of unconscious inference, Helmholtz argued that perceptions are formed by the interaction of bottom-up sensory data with top-down expectations. According to one interpretation of this doctrine, perception is a procedure of sequential hypothesis testing. We propose a new algorithm, called up-propagation, that realizes this interpretation in layered neural networks. It uses top-down connections to generate hypotheses, and bottom-up connections to revise them.

It is important to understand the difference between up-propagation and its ancestor, the backpropagation algorithm[1]. Backpropagation is a learning algorithm for recognition models. As shown in Figure 1a, bottom-up connections recognize patterns, while top-down connections propagate an error signal that is used to learn the recognition model.

In contrast, up-propagation is an algorithm for inverting and learning generative models, as shown in Figure 1b. Top-down connections generate patterns from a set of hidden variables. Sensory input is processed by inverting the generative model, recovering hidden variables that could have generated the sensory data. This operation is called either pattern recognition or pattern analysis, depending on the meaning of the hidden variables. Inversion of the generative model is done iteratively, through a negative feedback loop driven by an error signal from the bottom-up connections. The error signal is also used for learning the connections in the generative model.

Up-propagation can be regarded as a generalization of principal component analysis (PCA) and its variants to nonlinear, multilayer generative models. Our experiments with images of handwritten digits demonstrate that up-propagation learns a global, nonlinear model of a pattern manifold.

Figure 1: Bottom-up and top-down processing in neural networks. (a) Backprop network (b) Up-prop network

1. INVERTING THE GENERATIVE MODEL

The generative model is a network of \(L+1 \) layers of neurons, with layer 0 at the bottom and layer \(L \) at the top. The vectors \(x_t, t = 0 \ldots L \), are the activations of the layers. The pattern \(x_0 \) is generated from the hidden variables \(x_L \) by a top-down pass through the network:

\[
x_{t-1} = f(W_t x_t), \quad t = L, \ldots, 1.
\]

The nonlinear function \(f \) acts on vectors component by component. The matrix \(W_t \) contains the synaptic connections from the neurons in layer \(t \) to the neurons in layer \(t-1 \). A bias term \(b_{t-1} \) can be added to the argument of \(f \), but is omitted here. It is convenient to define auxiliary variables \(\hat{x}_t \) by \(x_t = f(\hat{x}_t) \). In terms of these auxiliary variables, the top-down pass is written as

\[
\hat{x}_{t-1} = W_t f(\hat{x}_t)
\]

Given a sensory input \(d \), the top-down generative model
can be inverted by finding hidden variables \(x_L \) that generate a pattern \(z_0 \) matching \(d \). If some of the hidden variables represent the identity of the pattern, the inversion operation is called recognition. Alternatively, the hidden variables may just be a more compact representation of the pattern, in which case the operation is called analysis or encoding. The inversion is done iteratively, as described below.

In the following, the operator \(\ast \) denotes elementwise multiplication of two vectors, so that \(z = x \ast y \) means \(z_i = x_i y_i \) for all \(i \). The bottom-up pass starts with the mismatch between the sensory data \(d \) and the generated pattern \(z_0 \),

\[
\delta_0 = f'(\tilde{z}_0) \ast (d - z_0) ,
\]
which is propagated upwards by

\[
\delta_t = f'(\tilde{z}_t) \ast (W_t^T \delta_{t-1}) .
\]

When the error signal reaches the top of the network, it is used to update the hidden variables \(x_L \),

\[
\Delta x_L \propto W_L^T \delta_{L-1} .
\]

This update closes the negative feedback loop. Then a new pattern \(z_0 \) is generated by a top-down pass (1), and the process starts over again.

This iterative inversion process performs gradient descent on the cost function \(\frac{1}{2} |d - z_0|^2 \), subject to the constraints (1). This can be proved using the chain rule, as in the traditional derivation of the backprop algorithm.

Inverting the generative model by negative feedback can be interpreted as a process of sequential hypothesis testing. The top-down connections generate a hypothesis about the sensory data. The bottom-up connections propagate an error signal that is the disagreement between the hypothesis and data. When the error signal reaches the top, it is used to generate a revised hypothesis, and the generate-test-revise cycle starts all over again. Perception is the convergence of this feedback loop to the hypothesis that is most consistent with the data.

2. LEARNING THE GENERATIVE MODEL

The synaptic weights \(W_t \) determine the types of patterns that the network is able to generate. To learn from examples, the weights are adjusted to improve the network's generation ability. A suitable cost function for learning is the reconstruction error \(\frac{1}{2} |d - z_0|^2 \) averaged over an ensemble of examples. Online gradient descent with respect to the synaptic weights is performed by a learning rule of the form

\[
\Delta W_t \propto \delta_{L-1} x_T^T .
\]

The same error signal \(\delta \) that was used to invert the generative model is also used to learn it.

The batch form of the optimization is compactly written using matrix notation. To do this, we define the matrices \(D, X_0, \ldots, X_L \) whose columns are the vectors \(d, z_0, \ldots, x_L \)

![Figure 2: One-step generation of handwritten digits. Weights of the 256-9 up-prop network (left) versus the top 9 principal components (right) corresponding to examples in the training set. Then computation and learning are the minimization of

\[
\min_{X_t, W_t} \frac{1}{2} |D - X_0|^2 ,
\]

subject to the constraint that

\[
X_{t-1} = f(W_t X_t), \quad t = 1, \ldots, L .
\]

In other words, up-prop is a dual minimization with respect to hidden variables and synaptic connections. Computation minimizes with respect to the hidden variables \(X_t \), and learning minimizes with respect to the synaptic weight matrices \(W_t \).

From the geometric viewpoint, up-propagation is an algorithm for learning pattern manifolds. The top-down pass (1) maps an \(n_L \)-dimensional vector \(x_L \) to an \(n_0 \)-dimensional vector \(z_0 \). Thus the generative model parametrizes a continuous \(n_L \)-dimensional manifold embedded in \(n_0 \)-dimensional space. Learning the generative model is equivalent to deforming the manifold to fit a database of examples.

Pattern manifolds are relevant when patterns vary continuously. For example, the variations in the image of a three-dimensional object produced by changes of viewpoint are clearly continuous, and can be described by the action of a transformation group on a prototype pattern. Many existing techniques for modeling pattern manifolds, such as PCA or PCA mixtures [3], depend on linear or locally linear approximations to the manifold. Up-prop constructs a globally parametrized, nonlinear manifold.

3. ONE-STEP GENERATION

The simplest generative model of the form (1) has just one step (\(L = 1 \)). Up-propagation minimizes the cost function

\[
\min_{X_1, W_1} \frac{1}{2} |D - f(W_1 X_1)|^2 .
\]

For a linear \(f \) this reduces to PCA, as the cost function is minimized when the vectors in the weight matrix \(W_1 \) span the same space as the top principal components of the data \(D \).

Up-propagation with a one-step generative model was applied to the USPS database [4], which consists of example
4. DISCUSSION

To summarize the experiments discussed above, we constructed separate generative models, one for each digit class. Relative to PCA, each generative model was superior at encoding digits from its corresponding class. This enhanced generative ability was due to the use of nonlinearity.

We also tried to use these generative models for recognition. A test digit was classified by inverting all the generative models, and then choosing the one best able to generate the digit. The nonlinearity of up-propagation tended to improve the recognition ability of models corresponding to all classes, not just the model corresponding to the correct classification of the digit. Therefore the improved encoding performance did not immediately transfer to improved recognition.

Iterative inversion was surprisingly fast, as shown in Figure 3, and gave solutions of surprisingly good quality in spite of potential problems with local minima, as shown in Figure 4.

In conclusion, we briefly compare up-propagation to other algorithms and architectures. In the autoencoder[6] and the Helmholtz machine[7], there are separate models of recognition and generation, both explicit. Recognition uses only bottom-up connections, and generation uses only top-down connections. Neither process is iterative. Both processes can operate completely independently; they only interact during learning. Backprop and up-prop both suffer from a lack of balance in their treatment of bottom-up and top-down processing. The autoencoder and the Helmholtz machine suffer from inability to use iterative dynamics for computation.

References