머리 움직임을 이용한 궁정/부정 의사 인식
문병선, 오경환
서강대학교 컴퓨터학과

Intention Recognition of Affirmation/Denial
using Head Movement

Byoung-Sun Moon, Kyung-Whan Oh
Computer Science Dept. of Sogang University

요 약
본 논문은 고계를 성/하로 구분하거나 좌/우로 가로 저어서 궁정과 부정을 구별하기 위한 것이다. 다시 말해서, 마우스나 키보드 대신에 머리의 움직임을 사용해서 '에/아니오'를 인식한다. 본 논문에서는 정규화된 칼라 공간(chromatic color space)과 조도(illumination)를 이용하여 얼굴 영역을 찾고 분할하는 자동 얼굴 영역 찾기와 영상의 위치 비교와 움직임 방향을 이용하여 우선 순위를 갖는 단순한 방향성을 구별하는 자동 의사 인식의 두 단계로 구성되어 있다. 이러한 단순한 방향성의 조합으로 '예/아니오'를 구분한다.

1. 서론
사회가 발전하면 항수록 사람들은 더욱 더 편리함과 빈번함을 원하여 이에 따라, 기술의 발전이 빠르다. 많은 분야에서 자동화가 이루어지고 사람의 의도를 알아주어 환경을 응답적 추적을 바란다. 머리 움직임은 장애가 있는 사람들에 있어서 컴퓨터를 제어할 수 있는 아주 간편한 방법이다. 현재는 주로 키보드나 마우스를 주로 사용하고 있으며 이것은 손과 눈의 동시적인 움직임, 움직임의 정확성과 반복성에 필요하다. 자율로 움직임에 적응하거나 쉽게 많은 사람들에게는 문제된다. 이러한 문제를 대응하여 머리의 움직임을 핵심이며 머리의 움직임을 이용한 머리 포인트 마우스나 이형의 몸통에 자신의 의사결정을 고개짓으로 표현할 수 있는 접근 방법을 생각해 볼 수 있다.

의사결정을 위해서는 두 가지 단계가 필요하다. 첫 번째 단계는 얼굴이 어디에 위치해 있는지 알 수 없는 영상에서 얼굴의 위치를 감지하고 찾아내는 자동 얼굴 영역 찾기(automatic human face location)이고 두 번째는 찾아낸 얼굴에서 의사결정을 파악하는 자동 의사 파악(automatic human intention recognition) 단계이다. 성공적인 의사 파악 시스템을 위해서는 위치에 따라 단계가 다르며 전통적 접근이 강조되어야 하지만 현재 얼굴 위치 찾기의 경우 많은 연구가 진행되고 있는데 반해 자동 의사 파악의 경우는 연구가 거의 진행되고 있지 않다.
본 논문은 칼라 정보, 움직임 정보, 사전정보의 3가지 기술을 기반으로 한다. 제 2절에서는 전재적인 구조를 살펴보고, 제 3절에서는 실험 및 결과와 방법과에서 살펴보도록 하겠다.

기존의 연구[5][6][7]들은 실시간 수행에 적용하기 어렵고 조명 방식의 변화, 기법(occlusion) 등의 영향에 면함하여, 특히 눈, 코, 입과 같은 얼굴 특징으로 얼굴을 찾는 것은 많이 사용되고 있으나 시간이 변환할 때마다 이러한 특징들은 변화하기 때문에 정확한 눈의 움직임을 얻기 위한 시간과 연속적이며 정확한 움직임을 검출하기 어렵다. 가림(Occlusion)과 변형가능성(non-rigidity)의 경우에는 큰 문제가 된다. 예를 들면 사람이 머리를 돌릴 때 얼굴 특징점이 가리거나 변형되기 때문이다. 많은 움직임 추정 알고리즘들은 고정(rigid) 음영에 대해서만 적용한다. 그러나 얼굴은 눈이 움직이며 얼굴 근육들이 변형 가능하기 때문에 고정(rigid) 음영으로 여겨지지 않는다. 모델기반 추적(model-based tracking)과 변형 가능한 음영경험(deformable-template matching)이 이러한 특징점의 변화를 다루기 위해서 사용될 수 있다. 특징점의 다른 시점에 대응하는 각 행성점은 가지고 하나의 특징점이 따라서 거의 정점 사용하는 것은 추적 성능을 향상시킬 수 있으나 재산기간이 많이 걸려 실시간 성능을 발휘할 수 없다[16].

2. 본론
직접적인 단계는 다음과 같다. 이를 이해하기 쉽게 도식화한 그림 1이 다음과 있다.
단계 1. 영상 획득 및 칼라공간 변환
단계 2. 픽셀 영역만을 이용한 영상 위치 파악
단계 3. 영역 영역 추출 및 점자 영역 제거
단계 4. 특징검출 및 영역비교 알고리즘
단계 5. 체소의 인식

그림 1. 전체적인 시스템

단계 1. 영상 획득 및 칼라공간 변환
영상 획득 과정은 컴퓨터가 사용자에게 물을 한 후 어느 일정 시간 후부터 작동하도록 한다. CCD 카메라 및 비디오 캠코더 등의 장비를 이용하여 핸드를 제거하기 가로저를 정화한 경 우를 획득한다. 영상에서 계측한 음직임을 갖추고 조명과 배경의 변화에 적응해 잘 수 있게 하기 위하여 칼라와 영역 분포 공간을 이용한다. 즉, 정규화된 픽셀 흰색기 때문에 영역의 존재를 추적하기 위해서는 빛과 분산만을 계산해 영역을 생성한다.

단계 2. 피복 마감 공간을 이용한 영역 위치 파악
영역의 존재와 위치를 찾기 위해서 이미 만들어진 모델과 일치 영상을 정합(matching)한다. 일치 영상의 각 화소를 정
화된 칼라 공간으로 변환하고 픽셀 흰색와 비교한

단계 3. 영역 영역 추출 및 점자 영역 제거
영역의 결과를 바탕으로 주변의 영역을 추적하고 픽셀 흰색과 비교한 결과로 되는 것이 특징을 가진 영역을 제거한다. 이는 빛과 영역을 제거하기 위한 것과 조금씩 영역을 제거하기 위해서는 빛과 영역만을 계산해 영역을 생성한다.

\[
\begin{align*}
\mathcal{P}(\text{피복부} \mid \mathcal{C}) & \approx \frac{\mathcal{P}(\text{피복부})}{\mathcal{P}(\mathcal{C} \mid \text{피복부})} \\
& = \frac{\mathcal{P}(\text{피복부}) \cdot \mathcal{P}(\mathcal{C})}{\mathcal{P}(\text{피복부}) \cdot \mathcal{P}(\mathcal{C})} = \mathcal{P}(\mathcal{C} \mid \text{피복부})
\end{align*}
\]

단계 4. 특징점 추출 및 영역 비교 (영상비교 알고리즘)
고유점의 외부이나 우주로 가로저를 가진다는 점을 기반으로 다음과 같은 순서를 따른다. 우선 좌표를 대칭적으로 가르

\[
\begin{align*}
\mathcal{P}(\mathcal{A} \oplus B) & = \mathcal{P}(A \cdot B) \\
\mathcal{P}(\mathcal{A} \oplus B) & = \mathcal{P}(A \cdot B) \cdot \mathcal{B}
\end{align*}
\]

단계 5. 전체적인 시스템

539
단계5. 제스처 인식 (머리 제스처 관련 알고리즘)

① 세 개의 (I_1, I_2, I_3) 영상을 따라 공간적 동적임을 이용한 머리 제스처 알고리즘에 (I_1, I_2)와 (I_2, I_3)

의 방식으로 놓는다.

② 각각의 찰로부터 나온 우선순위(priority)를 비교하여 결과를 얻는다.

3. 실험 결과 및 향후 과제

- 단순한 방향성 제스처

이 제스처는 주요 측에 따른 머리의 움직임을 나타낸다. 무

의 경우에 대해서 4개(위, 아래, 좌, 우)의 제스처가 있다. ‘위’는 머

리가 위로 움직여 나타나고 ‘아래’는 가슴을 향해 머리를 내립

으로 나타난다. ‘좌’는 머리가 동글게 돌리는 것이라고 하기

보다 좌로 돌리는 것을 말한다. ‘우’는 머리를 우측으로 돌리

는 것을 나타낸다.

- 진행하는 방향성 제스처

'아래/아래로'의 두 가지 제스처가 있다. 이것은 단순한 방향

성 제스처의 결과로부터 나온다. 마우스의 경우 제지체 시

간간격도 마우스 버튼이 '내려가-올라가-내려가-올라가'의

반복적인 움직임을 감지하여 다블클릭을 일으나는지 안 일어

는지 알 수 있다. 이와 같은 방법으로 '아래로'는 머리를 좌

우로 흔드는 것 conting '아래/아래로' 제스처로 이루어진다.

앞으로의 연구에서는 현재의 시스템을 실시간으로 추적하

는 부분을 보강하여 제작자이면서 연속적으로 방향성을 추적

할 수 있도록 머리의 움직임과 카메라의 움직임을 조정해주는

것이 필요하다. 또한 방향성 판별과 의사 판별을 위한 비

교 알고리즘에 있어서도 지금과 같이 비교적 불안정한 상태적

인 비교 방법이 아닌 것의 결과가 뒤의 결과에 영향을 미치는

표 1 실실험 결과(%)