кал라 영상 정보 보호를 위한 웨이브릿 변환 영역에서의
디지털 워터마킹

박 경빈, 황재문, 경성환
창원대학교 자연과학대학 전자기계학과

Digital Watermarking in Wavelet Transform Domain for Information Protection of Color Image

Jung-bin Park, Jae-man Hwang, Sung-Hwan Jung
MIPS Lab., Dept. of Computer Science, Changwon National University

요 약

본 논문은 디지털 칼라 영상 정보 보호하기 위해 웨이브릿 주파수 정보를 가지는 웨이브릿 변환을 이용한 워터마킹
(watermarking)방법에 대하여 연구하였다. 본 연구에서는 칼라 영상의 각 채널에 대해 영역의 시작과 끝에 둘
임을 고수용 영역과 영상, 영역에 정한 저수과 수역영역에 워터마크를 삽입하였다. 이 방법은 분할점에 정한 워터마크를
구현할 수 있다. 실현에서 칼라 영상의 각 채널을 웨이브릿 변환한 후 Seal 영상을 삽입하였다. 실험 결과, 워터마크의
칼라 영상에 삽입된 Seal 영상은 임의 영역이 확산된 경우에도 Seal 영상을 AND 연산값으로 구할 수 있었고, 압축
에도 적용을 보였다.

1. 서론

인터넷과 정보통신기술의 눈부신 발전으로 다양한 형태의 웨이브리
디지털 정보를 쉽게 제공할 수 있고, 진단에서 이를 효과적으로 송
송하고 있다. 그리고 생성된 웨이브릿 디지털 정보를 대량 전송할 수 있
는 방법이 계속 개발되고 있어서 필요로 하는 정보를 쉽게 얻을 수
있다. 그러나 이러한 디지털 정보들이 저작권자의 완료없이 무분별
하게 복제될 수 있어 디지털 정보를 보호하기 위한 방법이 요구된
다. 웨이브릿 디지털 정보 중에서 동영상 디지털 영상 정보를 보호하기
위하여 디지털 워터마킹 방법이 사용되고 있다[1].

일찍 워터마킹(watermarking)이라면 이런 미술 작품이나 책
의 저자가 이 작품을 자신의 것임을 표시하기 위해 채용으로
는 보이지 않는 특수한 형태의 표시를 해두는 것을 말한다.
오늘날 일반적으로 디지털 저작물에 대하여 적용하는 디지
털 워터마킹 방법은 디지털 데이터 내부에 저작권 정보 등을
포함시켜 데이터의 불법적인 내용 조작 후에도 저작권을 보장할 수
있는 것을 말한다. 이 자체 방법으로는 크게 공간 영역에서의 저
작권과 변환 영역에서의 저작권 방법으로 나누어진다[2].

본 논문에서는 웨이브릿 변환 영역(wavelet transform domain)에
서의 디지털 워터마킹을 연구하였다.

이는 웨이브릿 변환을 통해 얻은 각 채널에 대하여 시각적으로 일
반인 고주파 저수영역과 압축에 정한 저주파 주수영역에 워터
마크를 삽입함으로써 불법적인 조작에 저항 워터마킹 방법을 구현할
수 있게 되었다.

저서에 이어, 2장에서는 SWT의 변환에 대해 상세하고 3장
에서는 제안된 워터마킹 방법의 결과 구조에 대하여 설명한
다. 4장에서는 구현 방법 및 실험 결과를 고찰하고 마지막으
로 5장에서 결론을 밝혀낸다.

2. SWT(Symmetric Wavelet Transform) 변환

웨이브릿 변환은 웨이브릿이라고 불리는 기본 함수들을 중첩된 형
태로 표현한 함수이다. 이 변환은 웨이브릿과 저작권주자 하는 심호
와의 상관관계(correlation)에 의하여 구현된다. 이는 기본(mother) 웨이브릿을 이용하고 확장함으로써 생성된다. 웨이브릿의 경우에는 아
래의 식(1)과 같다. 식(1)에서 \(\phi(t) \)가 근원 웨이브릿이고, \(\phi(t) \)
을 변환에 사용하고 \(a \)를 확장하여 주파수 영역에 따른 다양한을 갖게된다.

\[
WT_{a,b} = \int_{-\infty}^{\infty} \phi(t) \frac{1}{a} \phi(t-b) a \, dt \quad (1)
\]
3. 제안한 워터마크 방법의 전체 구조

![Image](image.png)

그림 1. 제안한 워터마크의 전체 구성도

그림 1은 본 연구에서 제안한 클라과 영상에 대한 워터마크 방법의 전체적인 구성의 나타내는 것이다. 먼저, 원 영상이 입력되면 각 채널에 대하여 워터마크 변환이 한다. 그리고 변환된 R, G, B 각 채널의 정수 영상과 고주파 영상에 삽입 알고리즘을 적용하여 Seal 영상을 삽입한다. 다음으로 워터마크 변환을 통하여 워터마크된 영상을 얻는다.

3.1 워터마크 변환

그림 1의 전체 구성도에서 디지털 영상에 Seal 영상을 삽입하기 위하여 원 영상을 저주파 및 상주파와 수평, 수직, 대각 상품과 고주파 상품으로 1단계 Symmetric 워터마크 변환을 한다. 본 연구에서는 원 영상으로 128x128 크기의 블록 영상에 여기에 삽입하기 위한 64x64 크기의 그레이 해밀턴 Seal 영상(워터마크 영상)을 사용하였다.

3.2 워터마크 삽입 알고리즘

그림 2는 저주파 영상을 입력받아 1단계 워터마크 변환을 하여 얻은 MRA(Multi Resolution Approximate), MRR(Multi resolution Representation)영역을 각각 보는 것이다. 이렇게 구축하면 각 R, G, B 채널의 MRA 영상(LL)과 MRR 영상(LH, HL, HH)에 J. Ohnashi등이 제안한 알고리즘을 사용하여 Seal 영상을 삽입한다[5,6].

![Image](image.png)

그림 2. MRA 영역과 MRR 영역

(1) MRA 영역에 대한 워터마크

저주파 영역에서 삽입 알고리즘은 각 R, G, B 채널에서 구해진 저주파 계수를 사용한다. 먼저, MRA 영역에서 벡터 \(W(f, g) \)은 식(2)와 같이 정의된다.

\[
W(f, g) = (w_R(f, g), w_G(f, g), w_B(f, g)) \tag{2}
\]

(단, \(0 \leq f, g \leq N/2 \), \(N \)은 원 영상의 크기)

여기서 \(w_R, w_G, w_B \)는 각 채널의 저주파 대역에서의 워터마크 계수를 나타낸다. 다음, MRA 영역에서 최대값과 최소값을 구하고 식(3)을 이용하여 \(\delta \)값을 구한다.

\[
w_m(f, g) = \max(w(f, g)), \quad w_m(f, g) = \min(w(f, g))
\]

\[
\delta(f, g) = \left| w_m(f, g) - w_r(f, g) \right| \mod 2 \tag{3}
\]

여기에서 mod 2는 2로 나눈 나머지의 수를 말한다. 그리고 Seal 영상에서 배경 부분은 0로, Seal 부분은 1로 변환시킨 후, 앞에서 구해진 \(\delta \)값의 이진화된 Seal 영상의 값을 이용하여 Seal 영상을 삽입한다.

그림 3은 MRA 영역에 대한 워터마크 삽입 알고리즘의 개념도이다.

![Image](image.png)

그림 3. MRA 영역 삽입 알고리즘의 개념도

(2) MRR 영역에 대한 워터마크

고주파 영역에서 삽입을 위하여 MRR 영역에서 벡터 \(W(f, g) \)은 식(4)와 같이 정의된다.

\[
W(f, g) = (w_L(f, g), w_H(f, g), w_L(f, g)) \tag{4}
\]

여기서 \(w_L, w_H, w_L \)는 각 고주파 대역에서의 워터마크 계수를 나타낸다. 나머지 과정은 MRA 영역의 삽입 알고리즘과 동일하다. 그림 4는 MRR 영역에 대한 워터마크 삽입 알고리즘의 개념도이다.
이다.

그림 4. MRR 영역 삽입 알고리즘의 개념도

3.3 엑세스 번환

3.2절에서 Seal 영상 삽입이 끝난 후, 엑세스 번환을 수행하여 외래가변 영상을 얻는다.

그림 5(b)는 원 영상을 1 단계 엑세스 번환하여 고주파 고주파 영역과 저주파 저주파 영역에 Seal 영상을 삽입한 후, 역 엑세스 번환을 하여 얻는 원 위마크먼 영상의 한 예이다. 그리고 그림 5(c)는 5(a)의 원 영상과 5(b)의 위마크먼 영상의 차를 보여준다.

그림 5. 원 영상과 위마크먼 영상

4. 구현 환경 및 실험 결과

본 연구는 IBM 586 PC에서 GNU C/C++ 언어를 사용하였고, 128 x 128 크기 영상과 Seal 영상으로서 64x64 크기 위마크 영상을 사용하였다.

활용 영상의 각 화소의 색은 Red(R), Green(G), Blue(B) 각 채널 영역을 위마크먼 번환하여 각 채널에 3.2의 위마크 영상을 삽입 알고리즘을 수행하여 Seal 영상을 얻었다.

그리고 위마크먼 영상으로부터 Seal 영상을 얻기 위하여 MRA 영역에서 RGB색상의 정보로부터 삽입 알고리즘을 얻어번환하여 Seal영상을 얻기, 같은 방법으로 MRA영역의 고주파 영역에 Seal영상을 삽입하여 저주파 영역에 Seal영상을 삽입할 수 있었다.

실시 1은 위마크먼 영상 영상을 삽입으로 삽입된 경우에 대한 실험의 한 예이다. 실험 1의 결과에서 위마크먼 영상 영상 영상을 삽입한 영상을 받아 삽입한 영상에 Seal 영상을 삽입하여 저주파 영역으로서 Seal 영상을 추출할 수 있었다.

그리고 실험 2는 위마크먼 영상 영상 영상을 삽입으로 삽입된 경우에 대한 실험의 한 예이다. 실험 2의 결과에서 삽입으로 인해 위마크먼 영상 영상을 받아 삽입된 경우에도 Seal 영상을 추출할 수 가 있었으나.

5. 결론

본 논문에서는 위마크먼 번환을 이용하여 잘못된 영상의 각 채널을 식별하고, 저주파 저주파 영역과 저주파 저주파 영역에 Seal 영상을 삽입하는 방법을 제안하였다.

위마크먼 영상 영상 영상 영상을 삽입한 Seal 영상은 잘못된 영상의 각 채널을 규제하여 삽입하고, 저주파 저주파 영역에 Seal 영상을 이용함으로써 구현할 수 있었다. 그리고 양측에도 위마크먼 영상 영상 영상 영상 영상을 지킬 수 있다. 따라서 잘못된 영상에서 순서에 위마크먼 영상 영상 영상을 하여야 한다면 위마크먼 영상 영상 영상 영상 영상을 할 수 있으며, 저주파 저주파 영역 영역 모두에 위마크먼 영상 영상 영상을 할 수 있다.

참고 문헌