확률 추상 시간 기계

박지연*, 노경주, 이문근
전북대학교 컴퓨터과학과
email: {jypark, kjuno, mklee}@cs.chonbuk.ac.kr

Probabilistic Abstract Timed Machine

Ji-yeon Park*, Kyung-ju Noh, Moon-kin Lee
Dept. of Computer Science, Chonbuk National University

요 약

ATM(Abstract Timed Machine)는 실시간 시스템을 순환과학에서 명명하기 위해 고안된 LTS(Labeled Transition System)이다. ATM은 실제 시간의 문제와의 문제점을 함에 관하여 수행할 수 있는 상태트랜스퍼를 해석하기 위해 새로운 개념의 모드를 정의하였으며, 이 개념의 기반으로 구성되어 시스템의 이해를 높일 수 있도록 하였다. 또한 시간, 시점, 예외처리 등의 다양한 실시간 시스템의 속성을 표현한다. 그러나 실시간 시간은 이 기반의 원목의 변화에 동적 변형을 통해 많은 제약을 가진다.

PATM(Probabilistic ATM)는 자원의 사용이나 통신의 수행에 많은 값을 하는 시스템의 동작을 확률화하여 명명하고, 이를 통해 시스템의 동작을 명명하는 동작을 수행하고, 통신할 수 있게 하였다. 자원과 자원의 제약은 동작을 실행할 때 필요한 값을 고유의 값을 할당하고자 한다. 또한 동작의 동작과 동작에 대한 동작과 자원의 제약이 제한되어 있으며 제한된 환경에서 확률의 시스템을 명명하고, 통신할 수 있게 하였다. 자원과 자원의 제약은 동작을 실행할 때 필요한 값을 할당하고자 한다.

제한된 환경에서 실행할 수 있는 동작의 확률을 제공하고 동작함으로서 내장성과 동작실 시스템의 동작을 수행하기 위해 확률 ATM, 즉, PATM을 고안하였다.

PATM(Probabilistic ATM) 간의 사용이나 통신의 수행에 많은 값을 하는 시스템의 동작을 확률화하여 명명하고, 이를 통해 시스템의 동작을 명명하는 동작을 수행하고, 통신할 수 있게 하였다. 자원과 자원의 제약은 동작을 실행할 때 필요한 값을 할당하고자 한다. 자원과 자원의 제약은 동작을 실행할 때 필요한 값을 할당하고자 한다.

본 논문은 개별은 2절에서는 비교연구, 3절에서는 기존의 ATM에 대해 제안하고 있다. 4절에서는 기존의 ATM에 대해 제안하고 있다. 5절에서는 기존의 ATM에 대해 제안하고 있다. 6절에서는 기존의 ATM에 대해 제안하고 있다. 7절에서는 기존의 ATM에 대해 제안하고 있다. 8절에서는 기존의 ATM에 대해 제안하고 있다. 9절에서는 기존의 ATM에 대해 제안하고 있다. 10절에서는 기존의 ATM에 대해 제안하고 있다. 11절에서는 기존의 ATM에 대해 제안하고 있다. 12절에서는 기존의 ATM에 대해 제안하고 있다. 13절에서는 기존의 ATM에 대해 제안하고 있다. 14절에서는 기존의 ATM에 대해 제안하고 있다. 15절에서는 기존의 ATM에 대해 제안하고 있다. 16절에서는 기존의 ATM에 대해 제안하고 있다. 17절에서는 기존의 ATM에 대해 제안하고 있다. 18절에서는 기존의 ATM에 대해 제안하고 있다. 19절에서는 기존의 ATM에 대해 제안하고 있다. 20절에서는 기존의 ATM에 대해 제안하고 있다. 21절에서는 기존의 ATM에 대해 제안하고 있다. 22절에서는 기존의 ATM에 대해 제안하고 있다. 23절에서는 기존의 ATM에 대해 제안하고 있다. 24절에서는 기존의 ATM에 대해 제안하고 있다. 25절에서는 기존의 ATM에 대해 제안하고 있다. 26절에서는 기존의 ATM에 대해 제안하고 있다. 27절에서는 기존의 ATM에 대해 제안하고 있다. 28절에서는 기존의 ATM에 대해 제안하고 있다. 29절에서는 기존의 ATM에 대해 제안하고 있다. 30절에서는 기존의 ATM에 대해 제안하고 있다. 31절에서는 기존의 ATM에 대해 제안하고 있다. 32절에서는 기존의 ATM에 대해 제안하고 있다. 33절에서는 기존의 ATM에 대해 제안하고 있다. 34절에서는 기존의 ATM에 대해 제안하고 있다. 35절에서는 기존의 ATM에 대해 제안하고 있다. 36절에서는 기존의 ATM에 대해 제안하고 있다. 37절에서는 기존의 ATM에 대해 제안하고 있다. 38절에서는 기존의 ATM에 대해 제안하고 있다. 39절에서는 기존의 ATM에 대해 제안하고 있다. 40절에서는 기존의 ATM에 대해 제안하고 있다. 41절에서는 기존의 ATM에 대해 제안하고 있다. 42절에서는 기존의 ATM에 대해 제안하고 있다. 43절에서는 기존의 ATM에 대해 제안하고 있다. 44절에서는 기존의 ATM에 대해 제안하고 있다. 45절에서는 기존의 ATM에 대해 제안하고 있다. 46절에서는 기존의 ATM에 대해 제안하고 있다. 47절에서는 기존의 ATM에 대해 제안하고 있다. 48절에서는 기존의 ATM에 대해 제안하고 있다. 49절에서는 기존의 ATM에 대해 제안하고 있다. 50절에서는 기존의 ATM에 대해 제안하고 있다. 51절에서는 기존의 ATM에 대해 제안하고 있다. 52절에서는 기존의 ATM에 대해 제안하고 있다. 53절에서는 기존의 ATM에 대해 제안하고 있다. 54절에서는 기존의 ATM에 대해 제안하고 있다. 55절에서는 기존의 ATM에 대해 제안하고 있다. 56절에서는 기존의 ATM에 대해 제안하고 있다. 57절에서는 기존의 ATM에 대해 제안하고 있다. 58절에서는 기존의 ATM에 대해 제안하고 있다. 59절에서는 기존의 ATM에 대해 제안하고 있다. 60절에서는 기존의 ATM에 대해 제안하고 있다. 61절에서는 기존의 ATM에 대해 제안하고 있다. 62절에서는 기존의 ATM에 대해 제안하고 있다. 63절에서는 기존의 ATM에 대해 제안하고 있다. 64절에서는 기존의 ATM에 대해 제안하고 있다. 65절에서는 기존의 ATM에 대해 제안하고 있다. 66절에서는 기존의 ATM에 대해 제안하고 있다. 67절에서는 기존의 ATM에 대해 제안하고 있다. 68절에서는 기존의 ATM에 대해 제안하고 있다. 69절에서는 기존의 ATM에 대해 제안하고 있다. 70절에서는 기존의 ATM에 대해 제안하고 있다. 71절에서는 기존의 ATM에 대해 제안하고 있다. 72절에서는 기존의 ATM에 대해 제안하고 있다. 73절에서는 기존의 ATM에 대해 제안하고 있다. 74절에서는 기존의 ATM에 대해 제안하고 있다. 75절에서는 기존의 ATM에 대해 제안하고 있다. 76절에서는 기존의 ATM에 대해 제안하고 있다. 77절에서는 기존의 ATM에 대해 제안하고 있다. 78절에서는 기존의 ATM에 대해 제안하고 있다. 79절에서는 기존의 ATM에 대해 제안하고 있다. 80절에서는 기존의 ATM에 대해 제안하고 있다. 81절에서는 기존의 ATM에 대해 제안하고 있다. 82절에서는 기존의 ATM에 대해 제안하고 있다. 83절에서는 기존의 ATM에 대해 제안하고 있다. 84절에서는 기존의 ATM에 대해 제안하고 있다. 85절에서는 기존의 ATM에 대해 제안하고 있다. 86절에서는 기존의 ATM에 대해 제안하고 있다. 87절에서는 기존의 ATM에 대해 제안하고 있다. 88절에서는 기존의 ATM에 대해 제안하고 있다. 89절에서는 기존의 ATM에 대해 제안하고 있다. 90절에서는 기존의 ATM에 대해 제안하고 있다. 91절에서는 기존의 ATM에 대해 제안하고 있다. 92절에서는 기존의 ATM에 대해 제안하고 있다. 93절에서는 기존의 ATM에 대해 제안하고 있다. 94절에서는 기존의 ATM에 대해 제안하고 있다. 95절에서는 기존의 ATM에 대해 제안하고 있다. 96절에서는 기존의 ATM에 대해 제안하고 있다. 97절에서는 기존의 ATM에 대해 제안하고 있다. 98절에서는 기존의 ATM에 대해 제안하고 있다. 99절에서는 기존의 ATM에 대해 제안하고 있다. 100절에서는 기존의 ATM에 대해 제안하고 있다.

3. ATM

ATM은 소프트웨어 제 역량의 결과에서 소프트웨어를 명명하기 위해 고안된 LTS이다. ATM은 일부 위급 시스템과
2000년도 한국정부과학회 가을 학술발표논문집 Vol. 27. No. 2

같은 실험 시스템을 명제, 분석 및 검증을 수행 할 수 있는 정형 기법이다.

3.1 ATM 구성 요소
ATM은 모드(modes)의 결합, 가드(guards)된 전이(transition)의 결합, 포트(port), 실행 시작점과 실행의 종료점으로 구성된다.

먼선은 ATM의 기본 단위로 내부에 모드를 포함한다.

일반적으로 테스토, 프로시즈와 같은 독립적 프로그램 묶음 단위로 표현 한다.

모드는 시스템의 상태를 나타내기 위한 것으로 모드의 역할에 따라 각 모드는 타입화 되어 설계, 이다, 태일, 시간 계약 등 자신들만을 대표할 수 있는 속성을 갖는다. 모드의 종류로는 계산 모드, 추상화 모드, 주제 모드가 있다. 계산 모드는 단순한 내부에 직접적으로 포함하고 있어 자신의 실행에 의해 다음전이를 유발한다. 추상화 모드는 소프트웨어 구조의 하위 단계의 마린을 현재단계에서 추상화 시킨다. 주제 모드는 소프트웨어의 특정 기능을 수행하거나 특정 기능에 영향을 받는 모드들로 표현하는 모드이다.

전이는 이벤트, 조건, 시간계약으로 구성된 레이블을 갖고, 이에 따라 주제를 위해 포트를 가지는데 활성화(activation), 엔트리(entry), 대체(substitute)의 세 종류 포트가 있다. <그림 1>은 ATM의 명제 예제를 보여준다.

![ATM 명제 예제 (Buffer)](image)

3.2 ATM 정의
ATM은 정형적으로 \(M = \langle CAS, S, F, T, P \rangle \)로 정의된다. \(M \)은 ATM의 기본 단위로 미션을 말하며, \(CAS \)는 미션 내 모드의 집합을 말한다. \(CAS \)의 구성 모드 \(C \)와 추상화 모드 \(A \), 주제 모드 \(S \)로 구성된다. \(CAS = \langle C, S, R \rangle \)로 구성된다. \(N \)은 각 모드의 이름, \(S \)는 모드에 포함되는 실행문, \(R \)은 시간 계약이다. 시간 내 변환 \(R \)은 준비 시간, 주기, 실행 시간, 메시지의 속성을 갖는다. \(S \)는 미션의 시작점 결합, \(F \)는 미션의 종료점의 집합을 말한다. \(P \)는 미션과 미션 간의 메시지나 데이터의 송수신이 일어나는 포트로 활성화 포트, 엔트리 포트, 대체 포트로 구성된다. \(T \)는 모드와 모드간 또는 모드와 미션 간의 전이와 집합이다. 전이는 레이블 \(L = \langle CO, E, R \rangle \)을 갖는다. 레이블에서 \(CO \)는 조건, \(E \)는 이벤트, \(R \)는 전이의 제약 시간을 나타낸다.

4. PATM(Probabilistic ATM)
2월 비교연구를 통해 언급하였듯이 기존의 연구는 확률의 정적 표현을 통하여 시스템을 분석하고 있다. 시스템이 동작하는 중에 변화하는 확률을 명제에 반영하지 못하며 따라서 항상 변화 가능한 실세계적 시스템을 정확하게 분석할 수 있다는 단점이 있다. PATM은 기존의 확률 명제 기법을 보완하여 (1)기존 확률 확률을 표현하고 추가적으로 전이상에 (2)확률 함수 \(f(x_1, ..., x_n) \)을 기술한다.

확률 함수는 확률에 영향을 주는 환경 요인들을 파라미터로 한다. 이러한 환경 요인들은 통신망(traffic), 미션 간의 연결이 변환에 해당할 수 있는 메시지의 양, 미션 간의 연결체계의 활성화 여부, 통신을 위한 경로의 수 등이 있다. 다양한 환경 요인은 같이 변하는 것과 변하지 않는 것으로 구분할 수 있으며 변하는 것은 \(x_1, ..., x_n \)으로 표현하고 변하지 않는 것은 \(y_1, ..., y_m \)으로 한다.

4.1 PATM 정의
확률 ATM은 ATM과 같은 \(M = \langle CAS, S, F, T, P \rangle \)로 정의되며 전이에 기여하는 레이블 형식이 확률을 표현하기 위해 추가정의된다. 확률 ATM의 전이는 \(\{r(CAS \rightarrow CAS), d(CAS \rightarrow M) \} \)로 구성된 \(source, target \)간의 역할을 했다. \(Label \)은 기존 ATM의 정의 \(L = \langle Co, E, R \rangle \)에 확률이 추가되는 \(L = \langle Co, E, R, P \rangle \)로 구성된다. \(Co \)는 조건, \(E \)는 이벤트, \(R \)는 전이의 제약시간을 나타내고 \(P \)가 해당 전이가 가지는 확률 값 또는 확률 함수 \(f \)를 포함한다. 한 모드에서 발생하는 확률의 합은 1이다.

그림 2는 PATM에서의 \(M \)의 제어 \(send \)을 통하여 메시지 \(msg \)을 보내며 이 때 메시지가 제대로 전송될 확률이 0.6임을 보여주는 레이블이다.

![확률 ATM 전이 레이블 예제](image)

4.2 PATM의 확률 명제와 내고장성
PATM은 확률을 명제화 할 때 고정된 값으로 표현하거나 가변적 합수 값을 제공하는 확률 함수를 사용하여 시스템이 가능할 수 있는 확률을 명제 한다. PATM에 고정된 확률 값을 변경하여 분석하는 방법은 다른 확률 정형 기법과 크게 다르지 않으며 고정된 값이 명제된 ATM을 통하여 시스템의 정적 분석을 수행한다. 그러나, 다른 명제 기법과 달리 확률 확률 \(f \)을 사용함으로써 PATM은 명제된 시스템의 동적 분석을 제공하며 설명에 대한 확률의 동적 수정을 제공한다. 이는 시스템에 대한 내고장성과 발생한 관련을 가진다.

PATM의 확률 함수 활용을 두 경우의 내고장의 대체는 크게 3가지로 나눌 수 있다. (1) 고장이 발생했을 때 이전 상태로 되돌아가(rollback) 선택 가능한 다른 전이를 수행하는 것, (2) 되돌아가 고장이 발생한 시점 확률 함수를 변경함으로써 전이 확률을 변경하여 내고장성을 높이는 것, (3) 고장이 발생한 시점의 한정된 전이로 더 빨라지게 새로운 전이를 발생시키는 것이다. (3)의 경우는 고장이 발생시키지 않은 전이를 수정함으로써 시스템과 비슷한 대장 고장 허용치를 나타내는 예제 그래프이다. 그림에서
시스템이 행하는 최대 고장 비율을 $max\ fault\ rate$가 나타낸다. 초기 고장 값으로부터 증가되는 고장 발생 비율은 확률 함수 $f(x_1, x_2, y_1, y_2)$에 의해 발생한 실신으로 표현된다. 시스템에 대한 요구사항은 동작 중 최대 고장 비율 허용치를 넘지 않아야 하며 만약 최대치를 넘었을 경우 (시간 내에) 고장 발생 비율을 낮춰야 한다. 즉, 그래프의 점선 그래프를 유도하는 새로운 확률 함수로 변경해야 한다.

図3. 고장 발생율 그래프

그림 5 확률 함수를 전이의 레이블로 갖는 ATM

그러나, 시스템에서 확률이 의한 전이에 의한 발생한 고장이 모두 확률 함수를 변경함으로써 고장은 행하는 완전한 시스템을 기술하는 것은 아니다.

시스템이 가진 여러 하드웨어나 소프트웨어적 환경 중에는 고장이 발생하면 동작을 끝뜨고 고장을 해결해야 하는 부분이 있다. 따라서 확률 함수를 변경하고자 할 때나, 확률 함수를 ATM에 기술할 때 또는 고정된 확률 값을 계산할 때 실제 시스템은 운용되는 환경에서 동작적으로 변할 수 없는 요인, 또는 동작으로 변경되지 않고 하는 요인들 이용하여 이들이 미치는 영향이 사전에 반영되어, 혹은 고장 발생이후 보완되어야 한다.

5. 결론 및 향후 연구
본 논문에서는 실시간 시스템을 명세하기 위해 고안한 ATM의 실세계에서 동작하는 시스템을 보다 현실적으로 명세하며, 실시간적 분석을 할 수 있도록 하여 확률을 통해 확장한 PATM에 대하여 기술하였다.

PATM을 통하여 자연의 사용과 동작의 수행 과정에서 발생할 수 있는 동작의 상호와 실제 확률을 명세할 수 있으며 동작 중인 시스템의 현재 고장 함수에 대한 요구사항을 확률 함수를 동적으로 변경함으로써기하였다.

향후 연구로서는 확률에 영향을 주는 고장 요소와 이 요소들의 동적 변환에 영향을 주는 요소의 변환 요소로 작용할 수 없는 요소 등의 파악하려 하며, 확률을 기반으로 실행되는 시스템의 실행 분석을 위한 추가 연구도 수행되어야 한다. 확률을 이용한 다양한 정리와 세부 기술, 실행에 관한 분석 및 분석 결과의 효율적 이용에 대해 이루어질 것이다.

참고문헌