1. 서론

영상 분할은 이미지 처리 분야 뿐만 아니라 비디오 압축 분야에서도 더욱 더 중요한 분야로 주목받고 있다. 새로운 비디오 코딩 표준인 MPEG-4에서는 VOP(Video Object Plane)의 개념을 사용하였다. 즉 객체 기반 프로세스를 사용함으로써 각 객체의 비트스트림(bitstream)에 대한 용이한 접근과 객체 기반 비트스트림의 조작, 객체화의 상호작용, 장면 안에 포함된 객체의 재사용성을 많은 기능을 지원한다. 그러므로 더욱 강력한 자동 영상 분할 처리 기법이 요구되고 있다[1].

현재의 대부분 영상 분할 기법은 객체와 배경을 분리하기 위하여 비디오 시퀀스 안에 시간-공간 상관 정보를 활용한다. 시간적 분할은 배경으로부터 움직임 정보를 이용하여 움직임 객체를 식별하는 것이다. 공간적 분할은 배경으로부터 영상의 포현도를 이용하여 객체의 경계를 결정하는 것을 의미한다. 이와 같이 시간적 분할과 공간적 분할을 결합하여 비디오 객체 분할에 대한 효과적인 방법을 구축할 수가 있다.

본 논문에서는 칼라 정보 그리고 움직임 정보를 이용한 효과적인 비디오 객체 분할 알고리즘에 대하여 소개한다. 칼라 영상 분할은 Luv 색공간에서 수행된다. Luv 색공간은 작은 색상 차이에 대한 계산에 매우 유용하다. Non-parametric 기반 기반 색공간 클러스터링 알고리즘, 즉 mean shift algorithm을 이용하여 클러스터링 유사성에 대한 동일한 클러스터의 분할과 경계를 비교함으로써 객체를 추출한다.

2. 영상 분할 알고리즘 설계

본 논문에서는 시간-공간 영상 알고리즘의 특성을 중심으로 효과적인 자동 영상 분할에 초점을 두었다. 객체 추출을 위한 전체 영상 분할 블록도는 그림 1과 같다.
3.3 멀티미디어 스크립트의 생성

실시간 스크립트 전송이 필요한 디지털 방송에 적합한 스크립트를 생성하기 위하여 MPEG-4 Systems 표준을 따르는 스크립트를 생성한다. 이를 위해서 컨텐츠 컴퓨터에서부터 MPEG-4의 선 구성용 위한 정보를 추출하여 BIFS를 생성한다. 컨텐츠 컴퓨터 전송은 MPEG-4의 BIFS를 생성하기 위한 모든 정보를 가진다. 컨텐츠 컴퓨터 전송에 사용된 BIFS와 OD(Object Descriptor), 시청자의 각 객체 스크립트를 합성하여 MPEG-4 스크립트로 생성한다.

4. 구현

본 장에서는 MS Windows 98/NT 환경에서 Visual C++ 6.0을 이용하여 개발된 MPEG-4 컨텐츠를 생성하는 멀티미디어 저작 도구를 소개한다.

5. 결론

본 논문은 디지털 방송용 MPEG-4 컨텐츠 생성을 위한 컨텐츠 컴퓨터 전송, 저작 도구를 개발하였다. 방송용 컨텐츠의 특성을 지원하기 위하여 다양한 멀티미디어 객체를 이용하여 컨텐츠를 구성하고 각 객체가 사용자와 상호작용 할 수 있어야 하며 실시간 스트리밍 기능이 제공되어야 한다. 본 논문에서는 이러한 특성을 만족시키기 위하여 여러 멀티미디어 포맷에 적합한 컴퓨터로 사용가능한 멀티미디어 스크립트를 개발한다. 그리고 사용자에게 각 객체 기반 상호작용을 지원하는 컨텐츠를 쉽게 생성할 수 있도록 효과적 템플릿 등 고급 도구의 시각적인 사용자 인터페이스를 제공한다. 앞으로의 연구 방향은 컨텐츠 컴퓨터 전송에 사용가능한 멀티미디어 스트림의 생성이다.

6. 참고 문헌

그림 3 방송용 멀티미디어 저작 도구에서의 저작 예
3. 컬러 정보 기반 공간적 분할
3.1 컬러 정보 기반 공간적 분할
영상 분할을 위한 컬러 공간(color space)의 선택에는 여러 가지가 있다. 1976년 CIEXCIE(Commission Internationale de l’Eclairage)에서는 더욱 정확한 컬러 모델인 CIE(Commission Internationale de l’Eclairage)를 공간을 정의하였다. 여기서 L* 색상은 화방(luminance)이고 u* v* 색상은 색차(chrominance)이다. CIE L*uv 컬러 공간은 같은 컬러 차이의 계산에 매우 유용하기 때문에 모든 특정 공간(feature space) 계산은 L*uv 공간에서 수행된다.

<그림 2> 컬러 정보 기반 공간적 분할

3.2 Mean shift algorithm

\[\mu(x) = \frac{\int_{S^n} P(y)(y-x)dy}{\int_{S^n} P(y)dy} \]

여기서 p(x)는 랜덤 선택된 벡터의 확률 밀도 함수이다.

Mean shift algorithm에서의 mean shift vector는 확률 밀도 p(x)의 기울기에 비례하고, 확률 밀도 p(x)에 반비례한다.

\[\mu(x) = \frac{\nabla p(x)}{p(x)} \]

c는 상수이다. 위 식의 경계는 확률 밀도 함수에 의해 높은 밀집 지역을 찾을 수 있다는 것이다. 즉 확률 밀도 극대의 방향을 따라 밀도의 최대값 위치를 찾을 수 있다[2].

Mean shift algorithm
(1) 임의 좌표의 반지름 r를 선택한다.
(2) 원도우의 초기 위치를 선택한다.
(3) mean shift vector와 이동된 좌표 원도우사이의 거리를 계산한다.
(4) 중심점까지 반복하여 계산한다.

3.3 아키오, 미스 아메리카, 타쿠 영상 처리 결과

<그림 3> 컬러 분할 영상 예

4. 움직임 검출과 시간- 공간 알고리즘 통합
4.1 움직임 검출 모델
이미 있는 격체의 대부분은 움직임 패턴의 상관성을 따르는 특성이 있다. 움직임은 일반적으로 격체를 같은 지역으로 모으는 동작이 이루어진다. Parametric 모델의 움직임 추적기법은 parameter의 설정에 따라 격체의 움직임을 나타낼 수 있다.

Affine 움직임 모델은 parametric 모델 사이에서 가장 자주 사용된다. 움직임은 affine six parameter 모델과 optical flow equation을 이용하여 움직임 벡터 필드를 추정함으로써 구할 수 있다. Affine six parameter 움직임 모델은 다음과 같이 나타낼 수 있다[4].

\[\begin{bmatrix} u(x, y) \\ v(x, y) \end{bmatrix} = \begin{bmatrix} a_1 + a_2 x + a_3 y \\ a_4 + a_5 x + a_6 y \end{bmatrix} \]

여기서 u(x,y)와 v(x,y)는 수평과 수직 방향에 따른 움직임 벡터이다. a_1...a_6는 상수 파라미터이다. Affine 모델의 a_1...a_6 파라미터는 optical flow equation을 이용하여 추정할 수 있다. 이후 장면 변화 감지(scene change detection)를 위하여