MPLS 네트워크 시뮬레이터에 의한
경로 복원 기법의 시뮬레이션 및 성능 평가

안계임
전우격
중앙대학교 컴퓨터공학과
{fogl, chun}@ce.cmu.ac.kr

Simulation and Performance Evaluation of Path Restoration Mechanism by
using MPLS Network Simulator

Gae-Il Ahn
Woo-Jik Chun
Dept. of Computer Engineering, Chungnam University

요 약

본 논문에서는 MPLS 네트워크 시뮬레이터를 이용하여 기존의 경로 복원 기법들을 시뮬레이션
하고 각각의 성능을 비교 분석한다. MPLS 네트워크 시뮬레이터는 레이블 스위칭 기능 및 LDP
와 CR-LDP를 지원하는 시뮬레이터이다. 시뮬레이션 결과 복원 기법으로서 가장 많이 참조
되고 있는 Haskin에 의해 제안된 기법과 Makam에 의해 제안된 기법을 선택한다. 시뮬레이
션 결과, Haskin의 기법은 노드에서 시도해 복구된 손실은 거의 없지만 노드가 복구된 후에는
트래픽 급격히 증가할 뿐만 아니라 손실이 많지 않는 복구의 양도 증가하는 문제가 있다.
Makam의 기법은 노드 예어 시에 복구된 손실이 한 단점을 가지고 있다.

1. 서론

현재 인터넷의 폭발적인 증가와 다양한 응용 서비스의 등장
으로 인하여 기존의 인터넷 방식에 극적인 변화가 요구되고
있다. 이러한 변화를 수용할 수 있는 기술 중에서 가장 각광 받고
있는 기술이 MPLS(Multi - Protocol Label Switching)[3][5]이다.

본 논문에서는 Network Simulator(NS)[7]라는 시뮬레이터
상에서 구현한 MPLS 네트워크 시뮬레이터9을 사용하여
MPLS에서 중요한 응용 중 하나인 경로 복원 기법들을 시뮬
레이션한다. MPLS 네트워크 시뮬레이터는 레이블 스위칭 기
능 및 LDP(Label Distribution Protocol)[4]와 CR -
LDP(Constraint based Routing-LDP)[1]를 지원하는 시뮬레이
터이다. 경로 복원은 MPLS에서 보호해야 할 트래픽의
노드나 링크가 에러이거나 혼잡이 발생했을 때 대체 경로
backup path로 그 트래픽을 우회 시켜 신뢰성 있는 서비스를
제공하는 기술이다.

본 논문에서는 시뮬레이션 결과 복원 기법으로서 가장 많
이 참조되고 있는 Haskin에 의해 제안된 기법2과 Makam에 의
해서 제안된 기법[6]을 선택한다. 각각의 기법들은 동일 시뮬
레이션 방법을 사용했기 때문에, 그 시뮬레이션 결과를 통하여
각각의 기법들에 대한 성능을 비교 분석한다.

본 논문의 차례는 다음과 같다. 2장에서는 MPLS 네트워크
시뮬레이터에 대하여 간략히 소개하고, 3장에서는 경로복원 기
법들을 알아본다. 4장에서는 기존에 제안된 각각의 기법들을
시뮬레이션한 후 5장에서 성능을 평가하고, 6장에서 결론을 맺는다.

2. MPLS 네트워크 시뮬레이터

MPLS 네트워크 시뮬레이터는 다음의 기능들이 구현되어 있
다.
• 레이블 스위칭 기능 -- 레이블 스위칭 기능, TTL(Time -
To-Live), 그리고 Penultimate hop popping
• LDP 메시지 전송 기능 -- Request, Mapping, Withdraw,
Release, Notification 메시지 전송
• CR-LDP 메시지 전송 기능

MPLS 네트워크 시뮬레이터에서 다음과 같은 LSP 설정에 관
련된 기능을 지원한다.
• LDP로 정의되어 있는 다양한 LSP 설정 응용 즉, LSP 트
리거 방식, 레이블 할당 방식, 레이블 분배 제어, 레이블 보
유 모두에서의 설정 응용들을 지원한다.
• CR-LDP에 기반한 ER-LSP 설정
• Flow Aggregation 기능 -- fine FEC 를 coarse FEC 에
aggregation할 수 있는 기능 지원

3. 경로 복원 기법

본 논문에서는 기존에 제안된 경로 복원 기법들 중 가장 많
이 참조되고 있는 Makam에 의해 제안된 기법과 Haskin에 의
해 제안된 기법을 소개한다.

기본 경로(working path)는 보호한 트래픽에 설정된 경로를
말한다. 그림 1에서 LSR1와 LSR1 사이의 경로가 기본 경로이
다. 기본 경로는 대체 경로에 의하여 보호 받는다.

Makam 기법에서 대체 경로는 다음과 같이 설정된다.
• 기본 경로를 거치지 않도록 하면서 대체 경로를 설정한다.
• 노드 예어가 발생했을 때 그 예어를 막기 위한 노드가 대체 경
로가 설정될 노드까지 여러 앱리(-notification) 메시지를 전달하여 트래픽이 대체 경로로 전송되도록 한다. 그림 1에서 LSR7가 이 에러일 때 첫번째 에러 알림 메시지의 경로를 나타낸다.

그림 1: Makam과 Haskin의 경로 복원 기법들

Haskin 기법에서 대체 경로는 다음과 같이 설정된다.
- 기본 경로가 종복되지 않도록 하면서 대체 경로의 일부를 설정한다. 그림 1에서 LSR1~2-4-6-8-10-11이 대체 경로의 일부이다.
- 기본 경로와 반대방향으로 대체 경로의 일부를 설정한다. 그림 1에서 LSR1~9-7-5-3이 대체 경로의 일부이다.
- 두 대체 경로를 일부를 연결하여 하나의 완벽한 대체 경로를 만든다.
- 에러가 발생되면 대체 경로로 트래픽을 보냅니다. 예를 들어 그림 1에서 LSR7가 이 에러일 때 대체경로는 LSR5~3-1-2-4-6-8-10-11이 된다.

4. 경로 복원 기법 시뮬레이션

시뮬레이션 환경은 그림 1과 같다. 각 링크는 1Mbps의 대역폭과 10ms의 지연, 그리고 DropTail 쿨을 가지고 있다. Node0에서 200byte 채널의 패킷을 500Kbps 인 CBR(Continuous Bit Rate)로 생성한다.

그림 2: 그림 1의 환경 구성을 위한 코드

그림 2는 그림 1의 시뮬레이션 환경을 구축하기 위하여 Tcl 언어로 작성된 코드이다. 그림 2에서 'MPLSnode'는 새로운 MPLS 네트워크 코딩을 생성하기 위해 사용되며, 'configure-ldp-on-all-mpls-nodes'는 생성된 모든 MPLS 노드에 LDP(LDP) 메시지를 달래하기 위해 사용된다. 'enable-reflect'는 트래픽 성공률을 향상시키기 위해 사용되며, 'set-protect-issp'는 보호해야할 트래픽 및 에러를 탐지하는 시간 간격을 명시하기 위해 사용된다. 그림 2에서 보호해야 할 트래픽은 LSPD가 2000 인 LSP 이며, 0.01초마다 에러가 발생할 수있다. 이는 notify-er-lsp-fail라는 콜백(callback) 함수에 노드가 에러일 때 호출된다.

그림 3-(a)는 Haskin 기법에 대한 이벤트 스케줄링 코드이다. 0.0초에 ER 인 LSR3~5-7-9-11을 따라서 LSPD가 2000 인 ER LSP가 생성된다. 이것은 기본 경로리에 사용된다. 0.0초에 1000 인 LSR1~3-5-7-9-11을 ER LSP가 생성된다. 0.0초에 LSR1~3-5-7-9-11이 ER LSP가 생성된다. 이 ER LSP는 대체 경로로 사용되며, 두 LSP를 결합하기 위하여 LSPD가 2000 인 ER LSP를 생성할 때 LSPD가 ER LSP를 결합하여 사용된다. 0.3초에 Node0는 패킷을 생성하기 시작하고, 그 트래픽은 LSPD가 2000 인 ER LSP로 발생된다. 0.4초에 LSR7가 2000 인 ER LSP를 발생한다. 0.5초부터 0.7초 LSR5와 LSR7 사이에 링크이더가 발생한다. 본 논문에서는 이 링크이더는 노드이더로 간주하였다.

그림 3-(b)는 Makam 기법에 대한 이벤트 스케줄링 코드이다.

(a) Haskin 기법

(b) Makam 기법

5. 시뮬레이션 결과 및 분석

MPLS 네트워크 시뮬레이션을 통해 생성된 결과는 Network Animator(NAM)을 이용하여 시각화를 할 수 있다. 그림 4에서 보듯이 Haskin 기법의 경우 에러를 탐지한 LSR5에서 즉시 트래픽이 대체 경로로 전달되지만, Makam 기법은 LSR1을 통하여 Notification 메시지를 보내고 있는 동안 트래픽은 보호되지 않게 된다. 그림 5은 패킷 손실 및 속도가 이어질 때의 변화를 보여주고 있다. Haskin 기법의 경우 에러가 발생하면 트래픽이 대체 경로로 전달될 수 있으며 데이터 손실이 거의 없지만, 에러가 발생하는 노드가 설정에 가까우므로 속도 손실이 발생하지 않는 패킷의 양도 함께 증가하는 문제가 있다.
다. Makam 기법은 순서가 맞지 않는 패킷의 양은 거의 없지만, 예외 열림 메시지를 보내는 시점에 겪는 기법에 예약하는 노드가 복잡하게 가까울 수록 손실되는 패킷 수는 비례하여 증가한다.

그림 6은 예외 노드의 위치별 대역폭의 변화를 보여주는 그림이다. 노드 예약이 발생한 시점인 0.5초부터 약 0.2초 동안에는 두 기법은 대역폭 변화는 비슷하지만, 노드가 복구된 시점인 약 0.7초부터는 Haskin의 기법은 대역폭이 크게 늘어난다. 이것은 큰 패킷이 거의 손실되지 않는다는 것을 의미한다. 그러나 QoS를 고려한 경우라면, 즉 500Kbit/s를 예약한 경우에는 500Kbit 이상의 대역폭은 모두 채워질 것이다. 그리고 그 경우에는 두 기법은 거의 성능에서 차이가 나지 않을 것이다.

6. 결론 및 향후 연구 과제

본 논문에서는 MPLS 네트워크 시뮬레이터를 사용하여 기존에 제안된 경로 복원 기법들에 대한 시뮬레이션 방법을 기술하였고 각각의 기법들에 대한 성능을 비교 분석하였다.

시뮬레이션 결과, Haskin의 기법은 노드 예약 시에도 패킷의 손실은 거의 없지만 노드가 복구된 후에는 트래픽이 급격히 증가할 때마다 노드가 없어져 패킷의 양도 증가하는 문제가 있다. Makam의 기법은 노드 예약 시에 패킷의 손실이 극히 낮음을 가지고 있다.

향후 연구로는 실제로 운영되고 있는 대규모 MPLS망에서 ER-LSP가 아닌 CR-LSP를 사용하여 각각의 기법들을 시뮬레이션하는 것이다.

7. 참고 문헌