분산형 지역 기반 이동성 IP

김기일, 이 준화, 김 상하
충남대학교 컴퓨터과학과
shkj@cclab.cnu.ac.kr

DRMIP: Decentralization Region based Mobile-IP
Ki-Ill Kim, Jun-Hwa Lee and Sang-Ha Kim
Dept. of Computer Science, Chungnam National University

요 약
지금까지 인터넷에서 단말기의 이동성을 보장하기 위한 연구 방향은 제층적 방 구조에 따라 메크로 이동성과 마이크로 이동성을 분리하는 것이다. 렛르드프가 적은 메크로 이동성의 경우 Mobile IP 로 수렴되는 반면 이동성이 적은 마이크로 이동성의 경우 HA 로 보내지는 체어 메시지를 어떻게 줄일 것인가에 대하여 서로 다른 방안이 제시되고 있다. 현재까지 제시된 연구의 공통적인 문제는 게이트웨이와 라우터의 중복조로 발생할 수 있는 부하이다. 본 논문에서는 단말기의 이동성의 지역성 및 분산성 지역 에이전트 개념을 도입하여 이러한 문제를 해결한 분산 지역 기반 이동성 프로토콜인 DRMIP 를 제안한다. 또 DRMIP 의 특성 및 적용성을 검증하기 위하여 인터넷 프로토콜과의 호환성, QoS 지원성, 시스템 안정성, 왕복단위의 확장성 등의 측면에서 다 프로토콜 비교 분석하였다.

1. 서론

Mobile IP(항후 MIP 로 명명함)가 메크로 이동성을 지원하는 기본적인 헤더나들 이지지만 마이크로 이동성을 지원하기에는 문제점이 있다. 같은 렛르드프시 HA(Home Agent)에게 보내지는 체어 메시지의 폭주로 트래픽이 증가되고 결국 메이커가 마비 될 수 있다. 이러한 문제를 해결하기 위해 제안된 마이크로 이동성에 대한 연구는 크게 독자적인 라우팅 방법과 터널링 기반 라우팅 방법으로 나누어진다.

둘째, 마이크로 단위에 대해 터널링 기반 라우팅 방법을 사용하는 대표적인 연구로 LIMP[3], THEM[4], MIPRTM[5] 및 등이 있다. 이들의 경우 메크로/마이크로 이동성을 위한 체어 메시지를 구분하여 메시지를 줄일 수 있지만 게이트웨이 라우터를 대표 에이전트로 사용하므로 같은 단점을 갖게 된다.

본 논문에서는 터널링을 기반으로 하여 위의 문제점을 해결한 DRMIP (Region -based decentralization Mobile IP) 방식을 제안한다. 즉, DRMIP 는 게이트웨이와 라우터의 부하를 줄이고 기존 라우터의 변경을 최소화 할 수 있는 방안이다.

본 논문은 다음과 같이 구성된다. 2 장에서는 DRMIP의 구조 및 이동성 관리에 대해 살펴본다. 3 장에서는 현재까지 제안된 마이크로 이동성 방안들과 장단점을 비교 분석한다. 4 장에서는 항후의 연구 방향에 대해 살펴본다.

2. 분산 지역 기반 이동성 IP

DRMIP 는 분산 환경을 지원하는 제층적이고 논리적인 구조로 구조를 가진으로써 마이크로 이동성을 보장하는 프로토콜이다. 이 장에서는 DRMIP 의 링 구조와 등록 방식에 대하여 알아본다.

2.1 분산형 링 구조

DRMIP 는 마이크로 이동성을 지원하기 위해 기존의 연구[1-4]들과 같은 제층적 구조를 가지면서 하나의 에이전트의 과도한 부하를 여러 에이전트로 나누어 관리할 수 있는 분산형 링 구조를 가진다. 그림 1에서 보듯이 DRMIP 의 링 구조는 지역과 단말기의 이동성을 지원하는 에이전트를 포함하고 있다.

지역은 네트워크 구조와 별개로 단말기의 이동 수신 지역성(locality)을 고려하여 논리적으로 정해진 인접 셀들의 집합이며, 각 지역마다 고유한 지역 식별자(RID: 280
Regional IDentification)를 가진다.

이동 에이전트는 MIP의 HA, FA와 [3]의 RA와 기능에 FA의 기능을 추가한 RFA가 있다. RFA는 광고 메시지 전송, 디캡슐레이션(Decapsulation) 등의 MIP의 FA 기능과 이동 단말기에서 SRFA로의 등록 메시지를 터널링 하기 기능을 가지고 있다.

SRFA는 특별한 험프에이트의 추가 없이 새로운 이동 단말이 새 지역으로 이동하여 처음으로 접속한 RFA를 말한다. SRFA는 이전에 등록 메시지를 이용하여 이동 단말기의 정보를 관리하고 이것을 이용하여 이동 단말기의 정보를 빠르게 터널링 하므로 단말기의 지역 내의 이동을 훨씬 가볍게 한다.

![그림 1] DRMP의 구조

2.2 DRMP 확장 메시지

DRMP는 [6,7]에서 새로운 메시지 형태를 가지는 것과 달리 DRMP는 단순히 MIP의 선택적인 확장 프로토콜이다. 따라서 MIP의 호환성을 가지며 동작한다. 그림 2는 RA 기능을 첨부하기 위해 MIP광고 및 등록 메시지 확장인 DRMP 광고 및 등록 메시지를 나타낸다.

<table>
<thead>
<tr>
<th>type</th>
<th>length</th>
<th>reserved</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extensions....

(a) DRMP 광고 메시지(MIP 메시지 확장)

<table>
<thead>
<tr>
<th></th>
<th>type</th>
<th>length</th>
<th>reserved</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extensions....

(b) DRMP 등록 요구 메시지(MIP 메시지 확장)

[그림 2] DRMP (a) 광고 및 (b)등록 요구 메시지

DRMP 광고 메시지는 MIP 광고 메시지의 확장으로 단말기에 RFA와 논리적인 지역 식별자를 알리기 위해 사용한다. DRMP 등록 요청 메시지는 MIP 등록 요청 메시지의 확장으로 SRFA 또는 RFA에 등록을 요청할 때 사용한다. S와 R 험프의 비트는 등록을 요청할 때 RFA에 등록 메시지를 알리기 위해 사용한다. 즉, S는 SRFA로, R는 RFA 로 등록을 요구한 때 사용된다. 각 메시지의 인증과 보안을 위한 부분은 향후 연구가 필요하다.

2.3 지역 내 험프오브

지역 내에서 단말기의 험프오브가 발생하면, 단말기는 새로운 RFA 위 광고 메시지에 포함된 RID를 비교하여 현재 이동이 지역 내에서의 이동방향 새로운 지역으로의 이동인지를 감지한다. 만약 이동이 지역 내 이동이면 패킷의 MIP 정보의 변경을 하지 않고 마이크로 이동성을 제공하기 위한 DRMP 관련 정보를 변경함으로써 이동성을 유지하게 된다.

지역 내에서의 험프오브는 단말기의 위치에 따라 두 가지 경우로 나뉜다. 첫째는 단말기가 홈 지역에서 험프오브가 일어나는 경우이며, 둘째는 단말기가 외부 지역에서 험프오브가 발생하는 경우이다. 전자의 경우는 MIP의 동일하게 작동하며 후자의 경우에는 SRFA의 HA, RFA가 FA의 역할을 담당하는 DRMP가 동작한다. 그림 3은 외부 지역에서 단말기의 RFA, RFA1, RFA2로 순차적인 험프오브가 발생한 두 가지 경우의 MIP와 DRMP 메시지의 흐름을 보여준다.

[그림 3] 지역 내 험프오브 처리 과정

단말기가 SRFA가 아닌 RFA로 이동한 경우 해당 RFA로부터 CoA(Care of Address) 또는 CCoA(Contained CoA)를 할당받고. 이를 이용해 SRFA, RFA 등록 요청 메시지를 전송한다. 이때 단말기는 DRMP 등록 요청 메시지의 R 비트를 셋팅하여 RFA로 가지 않고 DRMP로 등록을 요구한다. 단말기의 등록 메시지를 수신한 해당 RFA는 유효성을 검사한 후 이를 SRFA로 레벨리 한다. 등록 메시지를 수신한 SRFA는 단말기의 위치 정보를 경신하고, 이후 도착하는 패킷을 새로운 CoA 또는 CCoA로 터널링한다. SRFA는 단말기를 대신하여 주기적으로 HA에 등록 메시지를 전송한다.

[그림 4] 지역 내 험프오브 데이터 흐름
그림 4는 지역 내에서 핸드오프 발생할 때 데이터 패킷의 흐름을 보여준다. 즉, HA로부터 SRFA에 도달한
패킷은 다시 단말기가 위치한 RFA로 재 터널링되는 데이터 흐름을 나타낸다.

2.4 지역 간 핸드오프

에코로 이동성을 DRMP와 MIP의 상호 연계를 통해서 제공된다. MIP는 단말기가 위치한 SRFA까지의 라우팅을 책임지고, 지역 내에서의 라우팅은 SRFA에서 단말기가 지의 라우팅은 DRMP 터널링에 의해 이루어진다. DRMP
광고 메시지를 통해 지역간의 이동을 감지한 단말기는
DRMP 및 MIP 등록 요청 메시지를 이용해서 SRFA 및 HA
의 위치 정보를 두루 재생산한다. HA 위치 정보는 SRFA에
의해 퍼리는 등록 메시지에 의해 생성된다. 이때
SRFA는 HA에게 자신의 CoA로 위치 정보를 동록함으로
써 단말기에 지역 내 이동을 속히게 된다.

송신자(CH: Correspondent Host)로부터 단말기의 루
짓은 세 단계로 나누어 라우팅 된다. 첫번째 단계로 CH-HA
간은 기존의 IP 라우팅을 이용하는 라우팅 된다. 두번째로
단계로 패킷을 수신한 HA는 MIP 방문 경로 정보를 참
조하여 이를 라우팅하여 위치한 지역의 SRFA로 터널
팅하여 전송한다. 마지막 단계로 SRFA는 단말기의
DRMP 위치 정보를 이용하여, 도착한 패킷의 터널 해더
부분만을 제외하여 단말기가 위치한 HA를 오는 단말기로
전송한다. 단말 단말기가 해치 지역으로 이동한 경우에는
MIP 만으로 동작하게 된다.

3. 마이크로 이동성 IP와의 비교

본 장에서는 본 논문에서 제안하는 DRMP와 타 프로토
콜과 비교 분석한다. DRMP는 터널링 방식에 기반하
고 있지만 대표 이태려넷은 보다 제한된 것을 방
지하기에 대표 이태려넷을 분석하는 것으로 개선된 방식을
채택하고 있다. 따라서, 본 장에서는 주로 터널링 방식
을 사용하지 않는 HAWAII[6], Cellular IP[7]와 DRMP
을 비교하고자 한다.

[6,7]의 경우, 액세스 망 또는 도메인 안에 있는 모든
기지국 및 라우터가 마이크로 이동성을 위한 고유한 프
로토름을 가져야 한다. 특히, [6]에서 FA가 CoA 셋
지정하지 않는 경우 이를 사용할 수 없다. DRMP의
경우, FA에서 RA를 사용하여 동작되며, 이를 탐색하기 FA
인 경우에도 Mobile IP가 동작하므로 호환성이 유지되
다. 즉, DRMP는 탐색한 FA를 탐색하지 않은 FA가 혼
합되어 동작할 수 있다. [6,7]가 기존의 라우팅 프로토
콜을 확장하여 하는 반면, DRMP는 Mobile IP의 확장
만으로 충분하다. 호스트 기반 라우팅을 하는 [6,7]의
경우 라우팅 테이블 확장성이 문제가 되며, 이것이 도메
인 크기를 제한하게 된다.

마이크로 이동성의 신뢰성은 액세스 망의 작동 장
제에 대한 서비스 중단 여부와 관련된다. [6,7]의 경우

인터넷에서 서비스 질(QoS) 연구는 크게 RSVP를 이용
하는 통합 서비스와 차별화 서비스로 분류한다. 플로우
레벨의 QoS를 다루는 통합 서비스의 경우 HA와 단말기
간의 자원 예약에 있어 CCoA를 사용하는 [6]이 유리하
다. 하지만, 통합 서비스의 경우 확장성 문제로 코어망
에서 사용되지 않게 된 것이다. 액세스 망에서 이용 가
능성은 있지만, 이동성의 경우 자원예약 기기 및 이동
주기로 인해 통합 서비스가 전반 수용하기에 문제가
가진다. 따라서, 이동성의 경우에는 제어가 간편한 차별
화 서비스가 직접 적용될 가능성이 높다고 하겠다. 한편,
터널링 방식의 경우에도 RSVP 적용 방법에 대한 연구가
활발히 진행되고 있다.

4. 결론

본 논문은 마이크로 이동성을 지원하기 위한 HA-
WAT, Cellular IP, LIMP 및 HMIP의 단점을 개선한
DRMP 방안을 제안한다. DRMP는 액세스 망에서 호스트
기반 라우팅을 사용하는 방안의 문제점과 이태려넷의
루터에서 제어가 집중되는 문제점을 해결하기 위해 분산
이태려넷과 터널링을 사용한다.

현재 ns 시뮬레이션을 이용해서 각 프로토콜에 대한
성능분석이 수행되고 있으며 인터넷스택으로의 확장에
대한 연구가 진행되고 있다.

5. 참고 문헌

for Supporting Mobility in Wide-area Wireless
Networks," ICNP ’99
Internet Host Mobility," ACM Computer comm. Rev.,
1999, pp.50-65.
Protocol," APCC/ICCS 98
theme-00.txt, Work in Progress, Mar. 1999.
1999.