객제지향 분석 모델의 일관성 및 오류 검침

기법에 관한 연구

한미정*, 김유경, 박재년
수명여자대학교 컴퓨터과학
mjhan, ykKim, jnpark@cs.sookmyung.ac.kr

Checking consistency and correctness in object-oriented analysis model

Mi-jung Han, Yu-kyung Kim, Jae-nyun Park
Dept. of Computer Science, Sook-Myung Women’s University

요 약
본 논문은 개체의 언어로 구현되어 정확성과 일관성이 있는 개발 산출물을 관리하기 위한 논문이다. 본 논문은 이를 위한 실험을 위해 정렬체계 테스트를-gun하고, 분석 모델의 정확성과 일관성 검증 규칙을 제안하고, 사례 연구를 통하여 적용하여 이 규칙을 시험하였다.

1. 서론
시스템 개발 초기에 수행되는 분석은 소프트웨어 생명 주기의 모든 단계에 영향을 미치는 중요한 단계이다. 초기에 개발된 산출물들이 정확하지 못한 경우, 이를 수정하기 위한 비용이 성실하게 관리된다. 시험 단계의 후기 개발 단계로 진행되며, 점차 증가되는 비용을 고려하면, 분석 단계에서 정확한 산출물을 개발하는 것이 매우 중요하다. 표준 객제지향 언어인 UML(Unified Modeling Language)은 생명주기의 초기의 단계에서 요구사항 명세와 분석 등을 수행하여 쓰임새 모델과 분석 모델을 개발한다. 쓰임새 모델은 고객의 언어로 기술되어 중복되지 않으나 쓰임새 모델의 내부 요소는 새롭게 관리할 수 있다. 반면 분석 모델은 사용자가 아닌 개발자의 언어로 작성되어 중복성이 없어야 하고, 모델의 내부 요소들은 사이의 상호 일관성을 유지하면서 요구사항을 정리해야 한다[1]. 특히 분석 모델의 쓰임새는 시스템의 정의 블록, 쓰임새도는 동적 블록 나타내므로, 이들 사이의 일관성을 확인하는 작업은 반드시 필요하다[1].

본 논문은 객제 지향 분석 모델의 정확성과 상호 일관성을 검증하는 방법을 제시하며, 좋은 품질의 분석 산출물을 개발하는 지침을 제공하려 한다. 2장 관련 연구에서는 본 논문에서 다루는 UML의 쓰임새 모델과 분석 모델을 설명하고, 오류 검증의 전문화에 필요한 정렬체계 테스트를 제시하며, 3장은 분석 모델의 정렬 체계를 위한 New FST 정의와 정확성 및 일관성 검증 규칙을 제안한다. 4장은 사례 연구를 통하여 제한된 방법론을 시험해 보고, 기존의 연구들과 비교한다. 5장에서는 결론과 향후 연구방향을 제시한다.

2. 관련 연구
2.1 UML의 분석 모델
사용자의 요구사항을 기술한 쓰임새 모델의 결과로 하는 UML 분석 모델은 클래스도와 교류도로 사용하여 요구사항을 구조화한다. 쓰

일체 모델은 쓰임새도와 교류도, 사전 흐름 기술서 등을 사용하여 사용자의 요구사항을 파악하고, 기술한다. 분석 모델은 교류도와 클래스도 등을 사용하여 앞서 파악한 요구사항을 구조화하며, 기존에 개발되어 사용자 요구사항이 바뀔 경우, 유지보수를 용이하게 한다. 클래스도는 분석 클래스와 그룹 사이의 관계로 구성된다. 분석 클래스는 평가 클래스와 엔터티 클래스, 테마 클래스 등의 3가지 스테레 오 타입이 있고, 독립적으로 구성된다. 독립은 전체 모델의 예

소이다. 클래스 사이의 관계는 연관 관계와 일반화 관계 등으로 표현된다. 교류도는 시간적 순서를 강조한 순서도와 구조도를 강조한 히트도를 구분한다. 두 히트도 모두 객제와 메시지를 사용하여 각각의 객체 사이에 메시지를 기술하고 있다.

2.2 정렬 체계 기법
정렬 체계 기법(Formal Specification Technique)은 정확한 의미를 정의하여 객제 지향 방법론을 구성하는 방법의 하나로, 데이터베이스 기법과 탁월한 방법론을 구조화하며, 개발자가 정렬 체계를 이해하는 것이 어렵지만, 개발 기반으로 산출물을 검증하고 검토하는데 용이하므로 분석 모델의 정확성과 일관성을 검토하기 위한 방법으로 사용된다. 객체(Object-Z, OCL, Z, UML) 등이 있으며, 대부분 OCL 방법론을 기반으로 하고 있다. 반면 비정형 방식 기법(Informal Specification Technique)은 이해하기가 쉽지만, 정확한 의미를 부여하여 개발자가 요구사항을 충분히 이해하기 어렵고, 모델링 도구의 구현은 용이하지만, 구현 요소들이 사이의 정확한 의미론의 해석은 복잡하다[1].

495
3. New FST와 합성 구성

먼저 분석 모델을 정형화하기 위한 New FST를 정의하고, 정형화와 일관성 검증 규칙을 제안한다.

3.1 New FST

본 논문에서 제안하는 New FST는 분석 모델의 정확성과 일관성을 검증하기 위한 필요한 요소들을 사용하여 기술한 Definition이다. 쓰임새와 클래스도, 교류도 등에 관한 New FST가 Definition 3.1과 Definition 3.2, Definition 3.3에 있다.

Definition 3.1 An use-case diagram is a three-tuple \((U, A, R) \), where the following conditions are satisfied:
1. \(U \) is a finite set of the names of use-cases in an use-case diagram.
2. \(A \) is a finite set of the names of actors in an use-case diagram.
3. \(R \) is a finite set of the names of relations in an use-case diagram.
4. For each \(r_i \in R \), \(r_i \) is consisted of a sender, a receiver and type.

Definition 3.2 A class diagram is a two-tuple \((C, R) \), where the following conditions are satisfied:
1. \(C \) is a finite set of the names of classes in a class diagram.
2. \(R \) is a finite set of the names of relations in a class diagram.
3. For each class \(c_i \in C \), \(c_i \) is consisted of a attributes, stereotype, and responsibilities. The stereotype is boundary, control or entity.
4. For each \(r_i \in R \), there are a sender, receiver, and type.

Definition 3.3 An Interaction diagram is a two-tuple \((O, M) \), where the following conditions are satisfied:
1. \(O \) is a finite set of the names of the objects in an interaction diagram.
2. \(M \) is a finite set of the names of message in an interaction diagram.
3. For each object \(o_i \in O \), \(o_i \) is consisted of object, type, and class. The object may be anonymous.
4. For each message \(m_i \in M \), \(m_i \) is consisted of an sender, a receiver and a sequence number.

3.2 분석 모델의 정확성 검증 규칙

쓰임새 모델을 포함한 분석 모델의 각 다이어그램의 정확성을 보장하기 위한 규칙들이 <표2.>와 <표3.> 등에 있다.

<table>
<thead>
<tr>
<th>구성요소</th>
<th>규칙</th>
</tr>
</thead>
<tbody>
<tr>
<td>클래스</td>
<td>ruleCI. 클래스의 이름은 유일하다.</td>
</tr>
<tr>
<td>관계 연관</td>
<td>ruleC2. 다른 클래스와 연관되지 않은 클래스는 존재하지 않는다.</td>
</tr>
<tr>
<td>일반화</td>
<td>ruleC3. 일반화 관계는 순환되지 않는다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구성요소</th>
<th>규칙</th>
</tr>
</thead>
<tbody>
<tr>
<td>메세지</td>
<td>ruleI. 다른 객체들과 메시지를 연관되지 않은 객체는 존재하지 않는다.</td>
</tr>
</tbody>
</table>

3.3 분석 모델의 일관성 검증 규칙

쓰임새 모델의 쓰임새는 사용자의 요구사항을 기술한 것으로 분석 모델의 코로디네이트 도구를 구현한다. 또한 교류도의 캐릭터그 외부 클래스에 정적이라야 한다. 쓰임새와 교류도, 교류도와 클래스도의 일관성 검증을 위한 사례는 <그림1.>과 <그림4.>에 있다.

4. 사례 연구 및 비교 분석

4.1 사례 연구

ATM 시스템의 쓰임새 모델, 분석 모델이 <그림2.>과 <그림3.>, <그림4.> 등에 있다.
그림4. 클래스도

4.2 비교 분석
[2]는 UML을 기반으로 한 설계 모델을 메타 모델을 사용하여 정확성
과 일관성을 검증하는 규칙들을 정의하고 있다. 그러나, 메타 모델의
환경에서는 도구를 구현할 수가 없기 때문에, 분석은 그동안의 연구
결과가 달리지 않았다.

5. 결론과 향후 연구 평가
본 논문은 개발자의 언어로 작성되어 정확성과 일관성이 있는 개
발 환경에서 사용할 수가 있다. 이를 지원하기 위해 본 논문은 분석
모델을 일관성을 검증하기 위해, New FST와 정확성과 일관성 검증
규칙을 개발하고, 시례 연구를 통해 적용하여 이를 시설화하여
시립형의 UML 표준의 속성과 유형을 분석함으로써 보다 정확한
결과를 도출할 수 있었다. 특히 이러한 검증 기법을 사용하기 위해 알고리즘에 관한 연구가
이론적으로 가능하다. 이를 바탕으로 검증 도구의 자동화를 위한
분석 모델을 자동화로 정형화하는 도구에 대한 연구도 진행되어야
한다.

6. 참고 문헌
[1] 박영철, 개체지향 분석 설계 Visual C++ 프로그래밍, 비앤씨,
1999.
[2] 정기현, 조용선, 박성구, "개체지향 설계 방법에서 오류 검출과
일관성 검사의 기법 연구", 정보보안논문지, 제6권, 제8호, 1999.
[3] 정기현, "개체지향 분석 설계가 개발의 일관성 검사", 한국과학기술
연구원 심리학회 논문, 1997.
1999.