정보 구조 모델링을 이용한 분석 단계에서의
객제 추출방법에 관한 연구

정철인* 박철현
숙명여자대학교 컴퓨터과학과
jjin@cs.sookmyung.ac.kr jnpark@sookmyung.ac.kr

A Study on the Object Extraction Methodology using the
Information Structure Modeling in the Analysis Phase

Jeong-in, Jeong* Jae-nyun, Park
Dept. of Computer Science, Sook-Myun Women's University

요 약

기존 객제 지향 방법론에 의한 소프트웨어 개발에서의 공통적인 문제점은 표기법이 복잡하고, 산출물도 많아서 사용자가 이해하기가 어렵다는 것이다. 또한 분석단계에서도 객체추출의 자세한 기술에 대해 적절히 설명하고 있어 불안정성이 있으며, 추출된 객제들 사이의 연관을 찾기가 쉽지 않아 확실성이 어렵다. 따라서, 본 논문에서는 간단한 표기법과 산출물로 객제 추출 과정과 사용자의 참여를 유도할 수 있는 정보 구조 모델링을 이용하여 분석 단계에서의 객제 추출에 대한 가이드라인을 제시하고자 한다.

1. 서론
소프트웨어의 위기와 함께 등장한 소프트웨어 공학은 구조적 방법론을 거치며 객제 지향 방법론(object-oriented methodology)이라는 새로운 패러다임에 이르렀다. 객제 지향 방법론은 더욱 더 치열한 비즈니스 환경에 따라 더욱 복잡해진다는 가정을 소프트웨어의 개념과 관련된 문제를 해결해 할 대안으로 고려받으며, 기존의 일차 지향(procedure-oriented)개발 방법론과 단순한 개발 과정의 시간표보다는 개발 이 후 유지보수 단계의 관계에 대해 객제 지향 개발 방법론은 새로운 시도로 받아들여져 활발한 연구가 진행되어 왔다[1]. Hoosh, Rumbaugh, Jacobson, Shinner-Miller 및 Yourdon등에 의해 근본적 연구가 이루어졌으며, 결국 Hoosh, Jacobson, Rumbaugh에 의해 통합된 개발 방법론인 UML(Unified Modeling Language)이 등장하였다. 그러나, 아직도 표기법(Notation)과 산출물의 복잡성에 의한 손실과 이해를 위해선 적절한 노력을 요구한다. 따라서, 효율적인 분석을 위해선 표기법이 이해하기 쉬워야 하며, 산출물은 많지 않아야 한다. 뿐만 아니라, 분석의 가장 중요한 관리의 객제 식별을 위한 구체적 인 객제관리의 제도가 필수적이다. 분석 단계에서의 지침에 따라 객제를 식별한다면 좀 더 효율적인 분석이 될 것이다. 본 논문에서는 사용자가 이해하기 쉬운 객제 추출의 관리에 참여할 수 있는 사용자 중심의 분석을 위한 정보 구조 모델링 기법을 이용하여, 분석 단계에서의 객제 추출에 대한 지침을 제시하고자 한다.

본 논문의 2장에서는 관련연구로서 정보 구조 모델링 기법의 기본 개념과 Jacobson의 기반의 객제에 대해서 설명하고, 3장에서는 정보 구조 모델링에서의 객제분류 및 비즈니스 영역을 위한 정보 구조 모델링 기법을 이용한 분석 단계에서의 객제 추출 방법을 제시한다. 마지막으로, 4장에서는 결론 및 향후 연구 방향을 제시한다.

2. 관련 연구
2.1 정보 구조 모델링
전체적으로 개발된 객제 지향 방법론의 공통적인 문제점은 표기법이 복잡하고, 분석, 설계 그리고 구현단의 연계성이 떨어지는 것이 다. 따라서 사용자 요구사항의 만족도가 떨어지고 개발자의 부담도 커지게 된다. 정보 구조 모델링은 이러한 점들을 고려하여 표기법을 간단하게 하고, 사용자 객제와 개발자 모델의 일관성을 보장하며 사용자 객제와 개발자 사이에 모델을 제시할 수 있는 분석 모델링 기법이다.

모델링 방식은 사건 중심(Event-Driven) 방식으로 사용자와 시스템의 관계는 사용자가 시스템에 요구를 하고 시스템은 그에 대한 응답을 시스템내의 정보를 이용하여 처리하는 것을 기본 개념으로 한다. 다른 개발 방법론에서는 여러 정보표기법과 많은 산출물로 일반 사용자가 쉽게 이해하기 어려운 것을 반해 정보 구조 모델링에서는 표기법이 쉽고 산출물이 간단하여 사용자가 이해하기 용이하도록 시스템을 명시한다. 정보 구조 모델링에서의 분석단계의 산출물으로는 배경도, 이벤트 다이어그램, 정보구조도, 행위구조도 등이 있다[7]. 기본 객체로는 인터페이스 객체, 엔터티 객체, 관계를 객체가 있으며, 각 객체마다 속성, 메소드를 갖고, 특히 메소드는 사용자 관점(User view), 관리자 관점(Manager view)을 사용하는 간단한 관점(Maintainer view)으로 나누어 기술된다.

정보 구조 모델링 방식은 자료의 종류와 관계를 세션에 따라 명시하기에 때문에 사용자에 대한 처리가 무엇인지를 표기하게 되고 시간에 따라서 대응해야 하는 객제의 종류가 그간의 관계를 명시한다. 따라서, 사용자가 이해하기 쉽고 스스로 작성할 수 있는 모델이다[3]. 정보 구조 모델링에서의 표기는 인터페이스 객체, 엔터티 객제, 관계를 객제 모두 동일하며, 그림 1과 같다.
3. 정보 구조 모델링을 이용한 객체 추출

3.1 정보 구조 모델링에서의 객체 분류

정보 구조 모델링에서는 객체는 기본 요소가 되며, 객체를 추출하는 것이 분석의 성과부분을 차지한다. Jacobson의 객체분류와 유사하게 정보 구조 모델링에서도 객체를 인터페이스 객체(Interface Object), 엔터프라이즈 객체(Enterprise Object), 컨트롤 객체(Control Object)로 분류한다.

(1) 인터페이스 객체: 시스템의 고유한 요구사항을 받아들이고 응답하는 데 필요한 정보를 가진 객체이다. 설계단계에서 더욱 구체화되어 이는 구현단계의 화면으로 표현되며, 요구가 제한하는 시간을 처리하는 단위가 된다. 인터페이스는 사용자와 시스템 자체의 데이터 교대로 역할하며, 입력을 받아 사용자에게 출력을 보여준다.

(2) 엔터프라이즈 객체: 시스템의 오늘날 보존해야 할 정보로서 대타계계에서 작동하며, 시스템이 고객에게 제공해야 하는 채런지 또는 기술에 관한 정보이다. 엔터프라이즈 객체는 다른 객체의 기본이 되며, 상호작용은 과정에 도구의 역할을 담당하기도 한다. 객체간의 관계는 사용자와 같은 객체의 실제 동작을 위해 관리자에게 출력을 보여준다.

(3) 컨트롤 객체: 인터페이스 객체와 엔터프라이즈 객체를 자연스럽게 조절할 수 있는 객체이다. 인터페이스 객체의 요구에 대해 여러 개의 엔터프라이즈 객체에 조합하여 동작할 수 있도록 한다. 따라서 사용자의 요구사항에 적절히 대응할 수 있는 중간결과로 할 수 있다. 본 논문에서는 정보구조 모델링 기법을 이용하여 각 객체들을 표준하여 이들은 설계단계에서 더욱 구체화된다.

3.2 정보 구조 모델링 기법을 이용한 객체 추출 단계

3.2.1. 배경도(context diagram)를 작성한다.

배경도는 분석 대상의 범위를 설정하게 이상화된 역할을 하며 시스템의 무엇(what)을 하는 것인가를 나타내는다. 그림 2와 같이 배경도, 정보, 표현의 3차원 분류 방법을 사용하여 엔터프라이즈 그리고 컨트롤 객체를 분류한다[5].

3.2.2 각 관리자(terminator)별로 이벤트 다이어그램(event diagram)을 작성한다.

이벤트 다이어그램은 관리자가 시스템에 행할 수 있는 이벤트를 WOD(Want/Order/Do)와 같은 형태로 표현한다[6], WOD는 행위와 시기를 선행적으로 만드는 방식을 나타내며, 행사는 시작(back), 처리(process), 종료(end)로 구성된다. 배경도에서 나타난 관리자가 시스템에 행할 수 있는 이벤트를 더욱 세세하게 표기하여 사용자에 대한 역할을 보여준다.

3.2.3 초기 인터페이스 객체(initial Interface Object)를 추출한다.

인터페이스 객체는 시스템이 고객의 요구사항을 받아들이고 응답해 주는데 필요한 정보를 가진 객체이다. 인터페이스는 사용자와 시스템 사이의 중간 매개체 역할을 하며, 입력을 받아 출력을 사용자에게 보여준다. 따라서 인터페이스 객체는 사용자가 인터페이스로 정의할 수 있는 각각의 이벤트에 필요한 정보들을 표현한다. 관리자에 의한 이벤트는 각각의 인터페이스 객체에 필요한 정보들로 구성된다. 관리자의 각각의 이벤트는 각각의 관리자 객체를 추출한다. 초기 인터페이스 객체를 추출하는 단계는 다음과 같다.

(1) 관리자를 인터페이스 객체의 주목점을 한다.

관리자는 식별에 정보를 제공하거나 반응할 수 있는 사람, 조사, 시스템을 가질 수 있다. 따라서, 관리자는 인터페이스 객체를 표현하는 정보 구조에서 주목점이 되며 속성(attribute)에 는 신념이나 필요 정보들로 나타난다.

(2) 인터페이스 객체의 정보들 정리한다.

이벤트 다이어그램에 나타난 이벤트들은 사용자(관리자)가 인터페이스를 통해 발생시킬 수 있는 것으로 이를 참조하여 인터페이스의 객체를 정리한다. 그리고 추출된 객체 객체는 관리자 객체에 뿐만 아니라 반응, 메소드, 속성을 필요로 하는 관리자 객체의 객체가 되는 관리자 객체의 객체를 나타낸다.

(3) 각 인터페이스 객체의 속성들에 그 이벤트를 수행하기 위한 필요 정보들을 나타낸다.

인터넷자 객체의 속성을 그에 해당하는 이벤트를 수행할 때 필요해 필요한 정보가 된다. 이 단계에서는 인터페이스 객체의 속성을 구현하려면 다른 객체의 속성이나 구현단계의 표시로 표시하지 않고 필요한 정보들을 나타낸다.

(4) 각 인터페이스 객체의 메소드를 정의한다.

인터넷자 객체마다 적절한 메소드를 정의하는데, 정보 구조 모델링에서의 메소드는 항상 3가지 작업으로 분류하여 정의된다.

사용자, 관리자, 관리자, 관리자, 관리자, 관리자, 관리자, 관리자, 관리자, 관리자.
드러나 그의 조건들을 고려하여 추출, 정의한다.

3.2.4. 조기 인터페이스 객체에서 엔터티 객체(Entity Object)를 추출한다.

 엔터티 객체는 시스템이 오랫동안 보존해야할 정보로 시스템이 고객에게 제공해야 하는 정보나 기능에 관한 정보이다. 따라서, 엔터티 객체의 추출을 위해서는 인터페이스 객체에서 나타나는 정보 중에서 갈등 뿐만 아니라 보존되어야 할 정보와 인터페이스 객체 사이에 공유되어야 할 정보들을 찾아내여야 한다. 엔터티 객체가 될 수 있는 후보는 다음과 같다.

(1) 주관체(관련자)에 대한 정보: 관련자는 시스템에 정보를 제공하거나 반은 받을 수 있는 사람, 조직 또는 시스템으로 이들에 대한 정보는 시스템에 독립적이며 이들의 기본 프로토콜은 적게 변하지 않고, 오랫동안 보존되어야 한다.

(2) 제품, 용역, 공용인 법률에 대한 정보: 조기 인터페이스 객체의 정보 중에 단순히 관련자와 시스템 사이의 상호작용에 필요한 제품이나 용역에 대한 정보, 그리고 여러 인터페이스 객체에 공통으로 사용되는 정보는 엔터티 객체로 정의되어야 하고 공유되어야 한다.

 이러한 지침에 따라 도서관 시스템 분석과정에서 추출된 엔터티 객체는 그림 4와 같다. 또한, 엔터티 객체 추출시에는 고려되어야 할 우선순위가 있다. 이미 기존 시스템에서 이미 정의되어 있는 정보, 엔터티 객체의 구축이 위한 자료, 업무의 효율화와 영업의 이익을 증대시키는 절약된 필요성에 의한 자료일 경우 우선적으로 엔터티 객체 후보로 한다. 이러한 이유로 엔터티 객체는 조기 인터페이스 객체의 이정부가 더욱 구체화되어야함에 따라 주요한, 우선순위에 따라 엔터티 객체를 추출함으로써 더욱 신뢰성있는 시스템으로의 전환가 가능해진다.

그림 3. 도서관 시스템 분석 - 엔터티 객체

3.2.5. 조기 인터페이스 객체와 엔터티 객체를 참조하여 컨트롤 객체(Control Object)를 추출한다.

 컨트롤 객체는 인터페이스 객체와 엔터티 객체를 치밀하게 조절하는 객체로서 인터페이스 객체의 객체를 넘겨주어 역할을 한다. 조기 인터페이스 객체에서 나타나는 이벤트들은 가능하지 않고 단순히 입력된 정보 혹은 저장되어 있는 엔터티 객체만으로 수행될 수도 있지만, 많은 경우 엔터티 객체의 조절 또는 자료의 정보를 필요로 한다. 이때 엔터티 객체를 조절하거나 정보에 처리를 가하는 역할을 담당하는 것이 주로 컨트롤 객체다. 컨트롤 객체 주요한 관심은 인터페이스 객체의 메소드로 정의하나, 컨트롤 객체로 정의하나 이다. 이때의 기존은 관계. 인터페이스 객체에서 입력된 자료와 나의 엔터티 객체만의 조합으로 필요한 정보를 얻을 수 있다면 메소드로 정의해야 한다. 둘째, 간과된 행위가 적절 반복이 된다면 이는 컨트롤 객체로 정의하여 효율성을 높인다.

3.2.6. 최종 인터페이스 객체를 추출한다.

 조기 인터페이스 객체를 통해 엔터티 객체와 컨트롤 객체를 추출한 후 조기 인터페이스 객체를 정의하는 단계를 거친다. 이 단계에서는 조기 인터페이스 객체의 정보중에서 엔터티 객체와 컨트롤 객체를 참조하는 것은 필요로 생각요소를 표현한다. 이러한 작업의 반복을 통해 서로 다른 인터페이스 객체의 연결을 나타내고 인터페이스 객체의 엔터티 객체와 컨트롤 객체의 연결도 나타내게 된다. 이렇게 유의해 져는 인터페이스 객체가 엔터티 객체와 컨트롤 객체를 참조할 때 객체에서 정보의 효과가 있어서 안전하다는 것이다. 이러한 작업은 시스템의 국립차고 자료가 발간되면 인간의 능력으로는 완벽하게 수행하기가 불가능하고, 자동화를 통해 중복작업을 완료할 것이 마련된다.

 모든 분석이 끝난후 사용자의 요구사항이 주가일 경우에는 3.2.2단계부터 시작하여 가장단 요구사항을 고려하여 위의 단계들을 수행하면 된다. 영업요소와 메소드를 함께 표현한 최종 인터페이스 객체는 그림 4와 같다.

4. 결론 및 향후 연구 과제

 본 논문에서는 정보가 모델링 기법을 이용한 분석 단계에서의 객체 추출 방법을 제안하였다. 정보 구조 모델링은 그간의 표기업으로서 사용자의 요구사항을 파악하기 쉽고, 엠크로 필요 정보를 정리하여 볼 수 있으며, 엔터티 객체의 멤버와 조합에 의한 구조가 확장이 용이하다. 이러한 결론은 제공하면 본 연구를 수행함으로써 더 많은 성실히 및 효율적인 분석이 가능하다. 현재의 인터페이스 객체의 입력으로 객체의 합병반영 및 작성되어 있는 것을 따라 자동으로 엔터티 객체의 추출하도록 하는 도구의 설계에 대한 연구가 진행중에 있다.

5. 참고문헌

[1] Donald G. Firesmith, Object Oriented requirements analysis and design, John Wiley & Sons, 1999