공간 데이터 변경 트랜잭션의 회복 기법

요약

ISO TC211에서는 응용 스키마에서 공간 객체의 공간 관련성을 조작하기 위해 위상 관련성을 기술하여야 함을 규칙적으로 정하고 있다. 따라서 공간 데이터의 변경이나 삭제 등 일정 범위의 공간 관련성을 유지하는 방법의 필요성은 요구된다. 공간 관련성을 유지하기 위해서 기존의 흐름 기법을 사용하면 수정의 결과가 다른 트랜잭션에 영향을 미치는 경우 때문에 많은 영향 복구가 발생한다. 따라서 공간 데이터 변경 트랜잭션의 특성을 이용하여 이를 해결해야 한다. 또한 흐름 수정 트랜잭션의 회복 기법은 한 트랜잭션의 UNDO에 의해 모든 흐름 트랜잭션이 완전히 복구되게 하는 방법이 있다.

본 논문에서는 클라이언트-서버 GIS에서 공간 관련성을 이용하여 관련된 트랜잭션을 선택적으로 복구하는 방법을 제시한다. 그리고 서브-트랜잭션 단위의 UNDO를 통해 로그 레코드 구조를 제시하며 UNDO 결과를 효율적으로 전파하는 방법을 제시한다.

1. 서론

지리 정보 데이터의 기술에 대한 표준을 제시하고 있는 ISO TC211에서는 일반 흐름 모델(GM)의 표준화에서 공간 데이터의 관련성을 조작하기 위한 GM를 흐름 모델로 분류하고 있다. 공간 데이터의 GM는 공간 데이터의 관련성을 동적으로 유지하기 위해 기존의 흐름 기법을 사용하는 방법의 필요성을 요구한다. 공간 데이터의 GM은 공간 데이터의 관련성을 조작하기 위한 GM으로 동적으로 관련성을 반영하는 방법을 제시한다. 따라서 공간 데이터의 GM은 공간 데이터의 관련성을 동적으로 관련성을 조작하기 위한 GM으로 동적으로 관련성을 반영하는 방법의 필요성을 요구한다.

기존의 흐름 모델 데이터베이스에서 흐름 기법을 사용하여 동적으로 관련성을 조작하기 위한 GM을 동적으로 관련성을 반영하는 방법을 제시한다. 그러나 기존의 흐름 모델 데이터베이스에서 흐름 기법을 사용하여 동적으로 관련성을 조작하기 위한 GM을 동적으로 관련성을 반영하는 방법을 제시한다. 그러나 기존의 흐름 모델 데이터베이스에서 흐름 기법을 사용하여 동적으로 관련성을 조작하기 위한 GM을 동적으로 관련성을 반영하는 방법을 제시한다.
로운 방법이 필요하다.

3. 문제 정의

이 장에서는 공간 데이터 변경 트랜잭션의 회복 시 문제점에 대해 기술하고, 회복 시 고려사항에 대해 설명한다.

3.1 공간 데이터 변경 트랜잭션의 회복시 문제점

공간 데이터의 변경 트랜잭션은 효율성을 높이기 위해서 다른 트랜잭션에 의해 수정 중인 데이터의 영향을 허용한다. 그러나 공간 데이터에 따라 영향을 끼치는 것은 불필요한 다수 트랜잭션의 UNDO를 초래하므로 허용될 수 없다.

[그림 1] UNDO가 발생하는 문제점: 불필요한 연쇄 복커 발생


이 완료된 데이터 영역을 허용하는 지도 수정 완료에서 UNDO를 줄이는 새로운 방법이 제시되어야 한다. 이 논문에서는 UNDO를 최소한으로 줄이면서도 지도에 오류가 발생하지 않도록 하기 위해 공간 관리에 의한 종속성에 따라 UNDO하는 방법을 제시한다.

3.2 회복 시 고려사항

일반적인 회복 기법은 ACID의 기본 개념을 바탕으로 한다. 이런 기법에서는 회복 전 트랜잭션 전체가 복원되어야 한다. 그러나 지도를 수정하는 트랜잭션은 수정 전에 지도에 시각화의 작업이 이루어지므로 전체 트랜잭션 작업을 취소하는 것은 비효율적이다. 이러한 문제를 풀기 위해 이 방법의 기반 요소로 트랜잭션의 시그널-트랜잭션을 나누며 각각의 종속성을 해제하고, 결론적으로는 클라이언트에게 UNDO를 기반으로 하는 또 다른 트랜잭션을 제외하지 않고 전산화할 수 있다. 그리고 수정 작업 중인 모든 클라이언트에게 UNDO의 결과를 전파해야 한다. 그러나 즉시 전파하는 시스템의 메시지 송수 및 문제를 발생시킬으므로 이를 조절하는 방법이 필요하다. 이때 시스템의 전문 완료 또는 부하 즉시 작업을 수행하면서 메시지 전송 부하를 줄이고 작업의 정확성도 유지할 수 있다.

4. 공간 데이터 변경 트랜잭션의 회복 기법

이 장에서는 지도의 위치를 위해 UNDO가 아닌 서브-트랜잭션을 선택하는 방법을 기술하고 로그 해독의 구조와 연쇄 복커의 예를 살펴본 후 시스템의 구성과 UNDO의 진단 방법에 대해 설명한다.
4.3 연쇄 복구의 예

NDJ에서 일시적으로 정공된 트랜잭션 중 UNDO가 발생하면 중속성을 고려하여 UNDO 한다. 이러한 방법의 UNDO 시나리오를 [그림 3]에서 설명한다.

[그림 3] UNDO 시나리오


4.4 시스템의 구성


[그림 4] 시스템의 구성

마지막으로 UNDO 결과 전파 모듈에서 클라이언트에게 UNDO 결과 전파하는 일을 담당한다.

4.5 UNDO 결과의 전파

클라이언트-서버 환경에서 서버는 트랜잭션을 복구한 후 그 결과를 클라이언트들에게 전달해야 한다. 이때 에러가 발생하기 위해 협동 작업 중인 클라이언트에는 즉시 전파(immediate propagation)를 하고 나머지에는 보류 전파(deferred propagation)를 하는 방법을 각각 적용한다. 즉 UNDO 전파는 복구에 영향을 받을 수 있는 협동 트랜잭션들에게 적용할 수 있다. 클라이언트의 결과가 클라이언트에 즉시 전파되어 실정이 유지되지 않도록 한다. 그러나 복구에 위해 직접적인 영향을 미치지 않는 독립적으로 수정 중인 트랜잭션들은 즉시 전파하지 않고 클라이언트의 요청에 의해 복구를 전달하는 방법을 사용한다. 이것은 UNDO의 최소화 모델을 보상하면서 순간 복구를 줄이는 방법이다.

5. 결론 및 향후 연구

본 논문에서는 클라이언트-서버 GIS 환경에서 동시 수행되는 공간 데이터 변경 트랜잭션들의 복구 기법을 제시하였다. 트랜잭션들의 연쇄 복구를 최소화함으로써 공간 관리성도 유지하기 위해 공간 관리성에 의한 트랜잭션의 중속성에 따라 복구할 기법을 설명하였다. 그리고 서브-트랜잭션 단위로 UNDO 하여 복구할 비용을 줄이며 UNDO 결과를 효율적으로 전파하는 방법을 제시하였다.

향후 연구의 청사는 본 논문에서 제시한 복구 기법을 클라이언트-서버 GIS 환경에서 구현하는 것이다. 이 외에도 이 기법을 사용하여 분산 공간 데이터베이스에서 지도 수정 트랜잭션의 복구 기법에 대한 연구가 필요하다.

6. 참고 문헌