Epitaxial Growth of Y$_2$O$_3$ films by Ion Beam Assisted Deposition.

C. N. Whang
ASSRC and Dept. of Physics, Yonsei Univ.

High quality epitaxial Y$_2$O$_3$ thin films were prepared on Si(111) and (001) substrates by using ion beam assisted deposition. As a substrate, clean and chemically oxidized Si wafers were used and the effects of surface state on the film crystallinity were investigated. The crystalline quality of the films were estimated by x-ray scattering, rutherford backscattering spectroscopy/channeling, and high-resolution transmission electron microscopy (HRTEM). The interaction between Y and Si atoms interfere the nucleation of Y$_2$O$_3$ at the initial growth stage, it could be suppressed by the interface SiO$_2$ layer. Therefore, the SiO$_2$ layer of the 4-6 layers, which have been known for hindering the crystal growth, could rather enhance the nucleation of the Y$_2$O$_3$, and the high quality epitaxial film could be grown successfully.

Electrical properties of Y$_2$O$_3$ films on Si(001) were measured by C-V and I-V, which revealed that the oxide trap charge density of the film was 1.8×10^8 C/cm2 and the breakdown field strength was about 10 MV/cm.