PS16(MA19) 공기중 독성 취발성 유기화합물 측정을 위한 각종
흡착제의 시료채취 특성 평가에 관한 연구
Evaluation of Sampling Methods Using Various
Adsorbents for the Measurement of Toxic Volatile
Organic Compounds in Ambient Air
백성욱·윤영훈·황승만·최진수*·박상근**
영남대학교 환경공학과 대기오염연구실, **포항공대 환경공학부 환경분석연구실,
*대전해천대학

1. 서론

최근 들어 환경대기중 환기유기화합물(Volatile Organic Compounds)에 대한 인식이 고조되면서 그 미량 유기물질의 측정 및 분석기법에 대한 연구가 활발히 수행되고 있다. 미국의 경우, 1980년대 초부터 대기중 VOC에 대한 연구가 활발히 이루어져서 여러 종류의 VOC에 대한 시료채취 및 분석방법이 명시되지만 우리나라에서는 VOC에 대한 절반적인 측정방법이 아직까지는 없는 실정이다. 미국에서 지정한 VOC의 시료채취범위 중에서 일반적으로 가장 널리 이용되고 있는 방법으로는 용기를 이용하여 유기화합물을 함유하고 있는 공기를 직접 채취하는 방법과 흡착제를 이용하는 방법을 들 수 있다. 이들 시료채취방법 중 최근에는 방향상과 같은 보다 일반적인 VOC에 대해서 상대적으로 분석의 간소성을 높일 수 있고 사용범위가 다양한 흡착제를 이용하는 흡착관채취법이 보다 폭넓게 이용되고 있다. 흡착관채취법은 흡착제의 흡착성을 이용한 채취방법으로 본 연구에서는 채취대상물질에 따른 여러 가지 흡착제의 시료채취 특성을 비교평가하고자 한다.

2. 연구 방법

흡착관채취법을 이용하여 대기중 VOC를 채취하는 데 사용된 흡착제로서 파 errorCallback이 독날계 사용되어 왔으며, 1980년대 이후에는 고분자계통 흡착제로서 Tenax가 주로 사용되었다. 최근에 들어서 고분자계통 흡착제와는 달리 열적으로 흡착능을 개선시킨 카본계 흡착제들이 사용되고 있으며 그 종류로는 Carbotrap, Carbosieve-S III 그리고 Carboxen 등을 들 수 있다. 본 연구에서는 이런 여러 다른 Single Adsorbent의 VOC 채취능 비교평가를 위해서, TO-17에서 권장하고 있으며 일반적으로 VOC 측정에 널리 사용되고 있는 흡착제 중 10개의 흡착제를 선정하여 실험을 하였다. 연구 대상 흡착제의 종류 및 특성은 표 1과 같이 요약하였으며, 흡착제의 재질에 따라 3가지 종류로 분류하였다.

대상 흡착제를 스테인리스 스틸 흡착트럼(1/4" × 9 cm, Perkin Elmer, UK)에 충전시켜 채취대상물질이 약간 300 mg이며, 보다 정확성 있는 자료를 얻기 위해서 각 대상 흡착제로 충전된 흡착트럼의 각각 5 set씩 준비하였다. 각 대상 흡착제로 충전된 Single Adsorbent Tube간의 비교평가 실험에 사용한 gas standard은 Scott Specialty Gases(Supelco, INC, USA)이 2개의 가스조합(Cat. No.4-1901, 1902)로 구성되어 있다. 각 실험에서 준비된 표준물질은 기본적으로 대기중에서 검출반도가 높고 인체에의 유해성이 높은 것으로 알려진 BTEX를 포함한 33개의 대상물질들로 구성되었다. 본 연구에서는 대상 흡착제로 충전된 흡착트럼의 gas standard를 함정(spiking)방식으로 함정장치를 구성하였으며 함정량은 benzene 100 ng으로 가중치를 설정하였다. 표준물질을 사용한 Single Adsorbent의 VOC 채취능 실험을 실제 현장 실험과 비교하여 대상 VOC 채취방법을 이용해 현장에서 시료를 채취하였으며, 시료채취장소는 자동차 정비공장과 인쇄소 등 5곳을 선정하였다. 채취 쿠션은 총재취 흡착제의 밀도에 따라 대략 100 m/min으로 설정하여 2시간간 동안 sampling을 하였다. 이렇게 준비된 표준시료와 현장 시료는 자동열탈착장치(ADT 400, Perkin Elmer, UK)가 연결된 Capillary Column GC/MSD를 사용하여 분석하였으며, 자동도의 VOC를 분석하기 위해 2단계 열탈착을 이용한 저온측정방법을 사용하여 분석의 간소도 및 Capillary Column의 특성을 높였다(백성욱,1996).

- 311 - Proceedings of 30th Meeting of KOSAE(2000)
3. 결과 및 고찰

Single Adsorbent의 비교평가 실험에서, Carbotrap을 기준으로 볼 때 Carbopack B는 Carbotrap에 비해 표준시료와 현장시료에 대해 전반적으로 열탈착 성능이 뛰어난 것으로 나타났다. 약한 환경제인 Carbotrap C는 표준시료에 대해서 열탈착 성능이 떨어지지만 상대적으로 휘발성이 약한 물질에 대한 환경제의 열탈착 성능은 다소 좋은 것으로 나타났으며, 현장시료에 대해서는 전반적으로 Carbotrap과 비슷한 열탈착 성능을 보였다. 강한 환경제인 Carbosieve-SIII(Carbonxen 1000)는 휘발성이 강한 특성뿐만 표준시료와 현장시료에 대해서 휘발제 자체가 일부 대상물질을 휘발한 후 완전한 열탈착이 이루어지지 못할 것으로 나타났다. 다른 고분자계통 환경제인 Chromosorb 102, Chromosorb 106, Porapak Q는 열적 안정성이 낮은 환경제로서 표준시료에 대해서 Carbotrap과 비슷하거나 낮은 열탈착 성능을 나타내었지만 현장시료에 대해서는 Carbotrap과 비슷한 열탈착 성능을 나타내었다. Tenax TA는 고분자계통 환경제 중에서 우수한 화학열탈착 성능을 가진 환경제로서 표준시료와 현장시료에 대해서 Carbotrap과 비해 비슷하거나 높은 열탈착 성능을 나타내었다. Activated Charcoal은 강한 휘발성 용액과 반응으로 인한 소실로 표준시료와 현장시료에 대해서 Carbotrap에 비해 열탈착 성능이 매우 낮은 것으로 나타났다.

다른 환경제에 비해 열적 안정성이 낮은 Chromosorb 102, Chromosorb 106, Porapak Q는 고평가계통의 환경제로서 ATD-400에서 열탈착 온도를 최대한한온도인 230 ℃로 설정하여 분석한 결과 환경제의 재활인 형성수지 자체가 고온에서 열분해용으로써 artifact가 발생한 것으로 나타났다. 따라서 이런 환경제의 특성 때문에 일부 고분자계통 환경제에 대해서는 열탈착법보다는 용매추출법을 적용하기도 한다.

사사
본 과제는 1998년도 과학기술진흥단 자수공모과제 연구비지원으로 수행되었습니다.

참고문헌

- 312 -