구동된 원자-공명기 계에서의 다광자공명 동역학

Dynamics of multi-photon resonances in a driven Jaynes–Cummings system

Hyoncheol Nha, Young-Tak Chough, Wonho Jhe(1), Kyoungwon An
Center for Macroscopic Quantum–field Laser, KAIST
(1)Department of Physics, Seoul National University
phylove@cais.kaist.ac.kr

Fock-state is a highly non-classical radiation-field state. So if one can generate a Fock-state it is possible to study many interesting quantum-mechanical aspects. But in spite of its attraction, it is very difficult to generate a Fock-state experimentally although there have been many theoretical and experimental efforts to do it. Recently Chough et. al.\(^{(1)}\) proposed a feasible scheme to achieve quasi number states. The key is to exploit the multi-photon resonances occurring in a driven Jaynes–Cummings system, so it is important to understand the processes at multi-photon resonances. In the present work we study the dynamics of multi-photon resonances in the driven Jaynes–Cummings system.

In our model a two-level atom resonantly coupled with a single-mode cavity is driven by a classical field of arbitrary-frequency as described by a Hamiltonian

\[
H = \frac{1}{2} \hbar \omega_A \sigma_z + \hbar \omega_c a^+ a + i \hbar g (a^+ \sigma_+ - a \sigma_-) + i \hbar \epsilon (\sigma_+ e^{-i \omega_c} - \sigma_- e^{i \omega_c}),
\]

where \(\omega_A, \omega_c, \omega_L\) are the atomic transition, the cavity resonance, the driving-field frequency respectively. And \(g\) is the atom–cavity coupling strength, \(\epsilon\) the coupling strength of the driving field and the atom proportional to the driving-field amplitude. Without the external driving-field, the atom–cavity system has the energy eigenstates (dressed states) and eigenenergies as follows.

\[
|\Psi^+\rangle = \cos \theta |n-1, e\rangle + i \sin \theta |n, g\rangle,
\]

\[
|\Psi^-\rangle = \sin \theta |n-1, e\rangle + i \cos \theta |n, g\rangle,
\]

\[
E_{\pm}^N = n \hbar \omega_c - \frac{\hbar \delta}{2} \pm \hbar \sqrt{g^2 n + \frac{\delta^2}{4}},
\]

where \(\tan 2\theta = -\frac{2g\sqrt{n}}{\delta}, \quad \delta = \omega_c - \omega_A\).

When the frequency of the driving-fields is such that \(\hbar \omega_L = E_0^N\), then \(N\)-photon resonance appears. Moreover, if we observe the time-evolution of the mean photon-number and the excited-state population of the atom, it is inferred that the atom–cavity system evolves sinusoidally between \(|0, g\rangle\) and \(|\Psi^+_N\rangle\).

In the figure below, we draw the dynamics for instance at two-photon resonance as a function of the normalized time \(gt\). It shows the intra-cavity mean photon number and the excited-state population which coincide with each other. The atom–cavity system evolves adiabatically between the two states \(|0, g\rangle\) and \(|\Psi^+_2\rangle\). Of course, there is no direct coupling between \(|0, g\rangle\) and \(|\Psi^+_2\rangle\).
which can be easily seen in the above Hamiltonian. Therefore, the intermediate states $|\Psi^+_1\rangle$, $|\Psi^-_1\rangle$ should intervene in the interaction.

When the two-photon resonance condition is satisfied ($2\hbar \omega_L = E^+_1$), the foregoing Hamiltonian in the interaction picture with four truncated bases $|0, g\rangle$, $|\Psi^+_1\rangle$, $|\Psi^-_1\rangle$, $|\Psi^+_2\rangle$ is given as

$$
H' = \begin{pmatrix}
0 & -iV^-_1 & -iV^+_1 & 0 \\
iV^-_1 & A^+_1 & 0 & V^+_2 \\
iV^+_1 & 0 & A^-_1 & -V^-_2 \\
0 & V^-_2 & -V^+_2 & 0
\end{pmatrix}
$$

where

$$
A^+_1 = \frac{E^+_1}{\hbar} - \omega_L
$$

$$
V^+_1 = \epsilon \cos \theta_1, \quad V^-_1 = \epsilon \sin \theta_1
$$

$$
V^+_2 = \epsilon \cos \theta_2 \sin \theta_1, \quad V^-_2 = \epsilon \cos \theta_2 \cos \theta_1
$$

If A^+_1 are rather larger than the off-diagonal elements, then two eigenvalues (λ_1, λ_2) are very small and the corresponding eigenstates are the superposition of nearly only two states $|0, g\rangle$ and $|\Psi^+_2\rangle$. Thus if the initial state is $|0, g\rangle$ then the system evolves adiabatically between $|0, g\rangle$ and $|\Psi^+_2\rangle$ with the periodicity $2\pi/|\lambda_1 - \lambda_2|$.

This adiabaticity is very similar to the STIRAP used in the coherent population transfer. But in this case we cannot transfer the system from $|0, g\rangle$ to $|\Psi^+_2\rangle$ since $V^+_1, V^-_1, V^+_2, V^-_2$ are not controllable independently.

![Graph](image)

We will also discuss the anti-damping effect occurring at two-photon resonance. The mean photon number may be increased even if the damping constants are increased.

This work is supported by Creative Research Initiatives of the Korean Ministry of Science and Technology.