광섬유 전반사형 외부 페브리-페로 센서의 개발

Development of Fiber Optic Total Reflected Extrinsic Fabry-Perot Interferometric Sensor

권일범, 최만용, 문한규, 김민수
한국표준과학연구원 산업측정표준분원
ibkwon@kriss.re.kr

광섬유 전반사형 외부 페브리-페로(TR-EFPF : total reflected extrinsic Fabry-Perot interferometric) 센서를 개발하여 외부 물리량의 변화 크기와 방향을 간편하게 알아낼 수 있도록 하였다. 이 TR-EFPF 센서 탐촉자는 한 개의 단일모드 광섬유와 한 개의 거울모드 광섬유를 모세 유리관 안에 고정하여 공기 간극을 형성함에 의하여 만들어진다. 또한 외부 물리량은 변형률을 측정할 수 있도록 압박이동 시험관의 표면에 부착하고 안정시행기를 사용하여 하중을 중첩시켜서 변형률의 변화를 측정하도록 하였다.

광섬유 TR-EFPF 센서는 Fig. 1과 같이 구성된다. 광원인 레이저 다이오드(LD)에서 빛이 광섬유에 입력되면 광섬유를 따라 입사광(Lin)이 2×2 광섬유 연계기를 통과하여 투광자에 도달하게 된다. 탐촉자는 입사광을 전달하는 단일모드 광섬유의 빛이 반사되어 되돌아가게 공기간극을 두고 위치한 급속도장 광섬유가 나란히 위치되도록 하는 모세 유리관으로 구성된다. 이러한 탐촉자에 고정된 단일모드 광섬유 끝단에 도달한 입사광의 약 97%는 공기간극으로 투파되고 나머지 약 3%는 1차 반사되어 되돌아가는 반사광(1Lref)이 된다. 한편 공기간극으로 투파된 빛은 공기간극을 진행하면서 급속도장 광섬유를 만나게 되고, 2차 반사되어 후 다시 원래의 광섬유로 입사된다. 이 2차로 광섬유에 입사되는 빛(2Lref)은 처음에 반사된 빛(1Lref)과 광섬유내부에서 만나 상호 간섭을 일으키게 된다. 따라서, 외부에서 주어지는 변형률은 공기간극의 급수 변화를 야기하고 그에 따라 공기간극을 지나는 빛의 광경로를 변화시키며 2차 반사광(2Lref)과 만나는 1차 반사광(1Lref)과 Fig. 2와 같이 상쇄, 또는 보강 간섭을 반복하게 된다. 결국 변형률 발생량에 따라 정점과 형태의 광신호를 얻게된다. 한편 변형의 방향이 일정한 경우에는 Fig. 2와 같이 공기간극이 증가하여 공기간극 사이을 통과하는 빛은 광 분산에 의한 손실이 발생함에 따라 광신호의 신흐수증가 감소하는 경향을 보인다. 물론 외부에서 주어지는 변형률이 압축방향일 경우 공기간극의 급수를 감소하게 되어 공기간극의 급수를 감소시키게 되고 그에 따라 광손실 감소시키므로 광신호의 정점값이 증가하게 될 것이다. 따라서 변형률의 크기 및 방향을 이러한 광신호의 정점과의 개수와 광신호의 신흐수정의 변화를 관찰함에 의하여 구할 수 있다.

Fig. 1 Schematic diagram of fiber optic TR-EFPF (total reflected extrinsic Fabry-Perot interferometric) sensor.

Fig. 2 Fiber optic signal output according to the increase of the air gap distance.
광섬유 TR-EPFI 센서를 제작하고 구조물의 변형률 측정 실험을 위하여 Fig. 3과 같이 만능시험기에서 설치하고 하중과 가각 재하 시험을 통하여 변형률 측정 실험을 수행하였다. Fig. 4와 같은 알루미늄 시험관과 Fig. 5와 같은 광섬유 센서 탐측자를 에폭시를 사용하여 부착하고 그 앞에 전기저항형 변형률 게이지를 부착하였다.

Fig. 3. Experimental setup for loading-unloading test of aluminum specimen with fiber optic TR-EPFI sensor.

Fig. 4. Alluminum specimen with fiber optic TR-EPFI sensor and electrical strain gage.

Fig. 5. Manufactured fiber optic TR-EPFI sensor probe.

Fig. 6과 같이 광출력 신호와 변형률게이지에 의한 측력 신호를 얻을 수 있었다. 이러한 광출력 신호의 특성을 디지털 프로그램에 의하여 처리하면 Fig. 7과 같이 광섬유 신호에 의하여 변형률의 크기와 방향을 얻을 수 있었다.

Fig. 6. Signal outputs from TR-EPFI and Fig. 7. Strains from TR-EPFI and electrical strain gage.

광섬유 전반시험 외부 페브리-페로 센서를 개발하기 위하여 광출력 특성을 조사하고, 탐측자를 제작하여 외부 물리장으로 변형률을 가하여 광출력 신호 변화를 관찰하였다. 이러한 연구를 통하여 광섬유 전반시험 외부 페브리-페로 센서는 외부 물리장의 크기 및 방향을 측정할 수 있는 신호수준의 변화 및 간섭근적이 동시에 충격할 수 있음을 확인하였다. 또한 외부 물리장을 측정하기 위한 유호 공간간의 길이는 약 200μm 이하임을 알 수 있었다. 변형률을 측정하는 실험을 통하여 개발된 TR-EPFI 센서가 견고한 저항형 변형률 게이지와 함께 변형률을 잘 측정할 수 있음을 보였다.