광양자테 레이저의 스펙트럼 특성

Spectral Properties of Photonic Quantum Ring Laser

배중우, 박병훈, 김주연, 권요태,
포항공과대학교 전자공학과
joong.woon@postech.ac.kr

대용량의 정보처리에 필요한 새로운 광원에 대한 연구가 활발히 진행되고 있는 가운데, 광원과 광반조 능력을 동시에 가지고 있는 VCSEL이 상당한 주목을 받아 왔지만, 이 소자는 발전하는 레이저의 과장이 활성층의 온도 변화에 따라 전이하는 결과, 패턴의 변질 등으로 인해 8×8 이상의 고밀도 어레이 제작이 어려운 단점이 있어 실용화에 어려움을 겪고 있다.

마이크로 디스크의 위스퍼링 감리리 모드를 활용한 광양자테 (PQR) 레이저가[1,2] 지난 몇 가지 특성 들은 VCSEL이 가진 문제들을 해결할 수 있는 가능성을 제시하고 있다. 수 μA에서 nA급의 전류영조로 구동할 수 있어 주임전류에 의한 활성층의 온도변화 문제가 없으며, VCSEL이 온도가 증가에 따라 출력파장이 선형적으로 증가하는 반면, PQR 레이저의 출력 파장은 \sqrt{T}에 비례하여 증가하므로 온도-파장 관계가 일치되는 영역에서는 주임전류나 외기 온도에 의한 영향을 거의 받지 않는 안정성 때문에 고감적 어레이 패턴 제작시 유리하다. 또한, 레이저 출력이의 각도에 따라 각각 다른 파장의 빛을 발생하며, 각도에 따른 각 파장별 빛을 이용하면 광센서 등 여러 가지 용도에 응용할 수 있을 것으로 기대된다.

PQR 레이저의 이러한 장점들을 이용하기 위해서는 소자에서 발생하는 스펙트럼 성분에 대한 다양한 분석이 필요하다. 이 연구에서 사용되는 PQR 레이저 소자의 크기를 제외한 기본적 구조는 참고문헌 [1,2]에 사용된 것과 동일하므로 구체적인 설명은 생략한다.

그림은 지름이 24μm인 PQR 레이저 소자(PQR $I_{ext}=20mA$, VCSEL $I_{ext}=12mA$)에 3mA의 전류를 주입하여 발생되는 빛을 Top Mirror에 대한 Normal 방향에서 마이크로렌즈(NA=0.25, x=10)로 집적하여 Monochromatometer에서 분석한 스펙트럼이다. Normal 방향으로 발사되는 PQR 레이저 모드는 804.3nm에서 측정되었고, Spontaneous Emission을 배경으로 768.3nm에서 또 하나의 Peak가 관찰되었다. 이 것은 위스퍼링 감리리 모드[1]가 메시의 측면으로 얻은 활성층을 통해 발생되면서 산란된 빛의 일부가 Normal 방향의 렌즈에 유입되어 검출된 것으로 판단된다. Spontaneous Emission에 대한 Peak의 세기 비율이 낮고, 선풍이 넓은 이유는 석각된 활성층의 단면 이 겹침이 때문이다.

앞서 발했듯이 PQR 레이저는 Top Mirror의 Normal 방향을 기준으로 측정하는 위치에 따라 파장을 다르므로 Numerical Aperture가 높은 렌즈를 이용하여 여러 각도로 발생되는 빔을 동시에 집적하여 분석하면 파장 변화의 구체성을 관찰할 수 있다. 그림1의 측정에 사용한 소자를 10mA의 전류로 구동하면서 Top Mirror의 Normal 방향으로부터 $\theta=30^\circ$ 이동한 위치에서 마이크로렌즈(NA=0.7, x=60)를 이용

![그림 1. Normal 방향에서 마이크로렌즈를 이용하여 측정한 PQR 레이저의 스펙트럼](image-url)
한국광학회 창립 10주년 기념 제11회 정기총회 및 2000년도 등계학술발표회 (2000. 2. 17 ~ 18)

노출량은 스펙트럼을 그림2에 나타내었다. Optical Fiber(NA=0.3)로 측정할 경우에는 PQR 모드가 단일 Peak로 검출되었지만[2], Numerical Aperture가 매우 크고 방출되는 빔을 집적할 수 있는 면적이 넓은 마이크로레인지로 측정한 결과에서 보는 바와 같이 다중 모드가 검출된다. 806.3nm의 약한 Peak은 DBR의 F-P notch가 통해 방출되는 VCSEL의 Spontaneous Emission이다. 구동전류가 VCSEL의 문턱 전류 아래이기 때문에 Peak가 그렇지 않아진다는 못했다. PQR 레이저의 Peak는 측정 각도 이동에 따라 806.3nm에서부터 11nm 단단장으로 전이하였음을 볼 수 있는데 이는 계산치가 잘 일치한다. 전이한 PQR Peak의 795.3nm을 중심으로 약 8A의 간격을 두고 다중 모드가 형성되어 있음을 볼 수 있는데, 모드의 Peak들이 여러 부분만 보이는 것은 역시 식각된 메사의 표면이 기울고, Monochromater의 Resolution이 낮기 때문인 것으로 판단된다. 이 모드 간격을 참고문헌 [2]에서 정의한 \(\Delta l = \frac{\lambda^2 \sin \varphi}{2n\pi R} \)를 이용하여 역으로 계산하면 \(\theta = 30^\circ \) Off-Normal에서 PQR의 Toroid는 측면에서 보았을 때 활성층의 단면에 대해 \(\varphi = 19.3^\circ \)의 각도로 진행하는 것으로 계산된다.

그림3은 Top Mirror의 Normal 방향에서부터 메사의 측면으로 \(\theta = 90^\circ \) 이동한 위치에서 FP Mirror 사이에 위치한 활성층의 단면(Edge)을 통해 방출되는 빔의 스펙트럼을 측정한 것이다. 실험을 위해 144 x 48μm 크기의 직사각형 구조로 (PQR I0=200mA, VCSEL I0=36mA)를 붙은 쪽 면의 메사에 접한하여 철단한 후, 절단면에 대한 Normal 방향에서 Fiber로 빔을 집적하여 OSA(Optical Spectrum Analyzer)에서 측정한 것이다. 주입전류를 0.5mA부터 25mA까지 증가하면서 파장 변화를 측정한 결과, 활성층의 이득 특성의 형태를 알 수 있는 Spontaneous Emission이 측정되었고, 이것을 배경으로 PQR 레이저 Peak가 나타났다. 24.5mA의 전류증가에 대해 762.35nm에서 762.97nm로 약간 장파장 전이하였는데 매우 높이 난 온도 안정성을 보이고 있음을 알 수 있다. 향후 이 방식의 실험을 통해 활성층의 이득곡선과 PQR 레이저의 상호관계를 밝힐 수 있을 것으로 기대된다.

![그림 2. Top Mirror의 Normal 방향에서 30° 벽이나 면으로 측정한 스펙트럼](image1)

![그림 3. \(\theta = 90^\circ \)에서 주입 전류 변화에 따른 스펙트럼 변화 (a) 3.5mA (b) 7mA (c) 10mA (d) 15mA (e) 20mA (f) 25mA](image2)

참고문헌

273