AC4) Ultra-thin Window EPMA를 이용한 CaCO3-CaSO4 혼성의 단일 입자 분석

Analysis of Heterogeneous CaCO3-CaSO4 Single Particle using Ultra-thin Window EPMA

노철언·오근영·R. Van Grieken
한림대학교 화학과, Department of Chemistry, University of Antwerp(UIA)

1. 서론

2. 연구 방법

Silicon wafer 위에 deposed CaCO3 입자를 48시간동안 H2SO4 용액으로 포화시킨 반응실에서 반응시켜, 입자 내부는 CaCO3이고 입자 표면은 CaSO4로 되어 있는 heterogeneous한 입자를 만들었다. 이로 CaSO4 화합물의 표면 두께를 다른 분석방법으로 확인할 수는 없었으나 EPMA 측정으로부터 입자 내부는 CaCO3이고 입자 표면은 CaSO4로 되어있음을 확인할 수 있었다.

데이터 측정은 Oxford Link SATW ultra-thin window EDX 검출기를 사용한 JEOLE Superpro 733 SEM(Scanning Electron Microscopy)을 사용하여 행하였다. 각각의 입자들은 point analysis mode로 분석하였고 data 측정시 전자빔의 에너지를 5, 10, 15, 20kV로 변화시켜 각 입자를 분석함으로써 화합물의 heterogeneity를 분석할 수 있었다. 각각의 입자들의 모양과 크기는 높은 배율의 secondary electron image를 통해 알 수 있었고 이에 측정한 모양과 크기는 Monte Carlo Calculation에 사용하였다. Monte Carlo Calculation으로부터 CaSO4 화합물의 표면층 두께에 대한 정보를 얻으려고 하였다.

3. 결과 및 고찰

두 개의 화합물이 서로 다른 영역에 혼합(즉 heterogeneous) 존재하는 입자의 경우, 입자와 각 영역의 에너지의 변화를 미세하게 데이터를 측정함으로써 개개 입자의 조성과 heterogeneity를 분석할 수 있다. 입자와 각 영역의 에너지가 커질수록 입자장자 입자내로 침투하는 영역(electron penetration depth)이 커지고, 따라서 입 자내에서 각 원소마다의 특정 X-선이 생성되는 영역(X-ray generation depth)도 커지게 된다. 입자와 각 영역의 에너지의 변화를 데이터를 얻음으로써, 낮은 에너지의 입자에서서 발생하는 경로를 측정하고 높은 에너지의 입자에서서 발생하는 경로를 측정한다(Ro, et al., 1999).

하지만 각 원소의 특정 X-선은 입자에서서 발생하여 X-선 검출기로 검출되는 과정에서, 입자와 각 영역의 에너지의 변화로 인해 각 X-선의 분석이 약화된다. 이러한 효과가 원소의 X-선의 양과, 그로부터 개개 입자에 존재하는 화합물의 분석하는 것, 또한 본 연구의 경우와 같이 두 개의 화합물이 heterogeneous하게 존재하는 경우,
입자 표면에 존재하는 화학종의 두께에 대한 정보를 얻을 것은 X-선 세기로부터 원소의 농도를 정량적으로 구하기에만 가능하다. 이러한 목적으로 Monte Carlo 방법을 새롭게 개선하여 데이터 처리를 하였다.

[그림 1]에는 일차전자의 에너지를 5, 10, 20 kV로 바꾸어 가면서 얻은 X-선 스펙트럼을 보였다. C와 O 원소의 X-선 세기에는 일차전자의 에너지가 변화하더라도 비록 20 kV에서 가장 작은 세기들을 보이지만, 큰 변화를 보이지 않고 있다. 하지만 Si, Ca, Sr 원소의 X-선 세기에는 일차전자의 에너지가 커질수록 증가하고 있다. 따라서 일차전자의 에너지 변화에 따른 각 원소의 X-선 세기 데이터로부터는 단일입자의 heterogeneity에 대한 정보를 직접적으로 얻을 수 없다.

[그림 2]에는 수 μm 크기의 6개의 CaCO3-CaSO4 혼성 입자에 대하여, CaCO3-CaSO4 화학종이 내부에 균일하게 존재하고 있다고 가정하고, 일차전자의 에너지 변화에 따른 각각의 원소별 농도(atomic fraction)를 Monte Carlo 계산으로 얻은 결과를 보였다. 만약 CaCO3-CaSO4 화학종이 입자에 균일하게 존재한다면 각 원소의 농도는 일차전자의 에너지에 변화하지 않고 일정해야 한다. 하지만 일차전자의 에너지가 증가함수록 C의 원소 농도는 증가하고 S 원소의 농도는 감소하고 있다. 이는 CaCO3 화학종이 입자 내부에 존재하고 CaSO4가 입자 표면에 존재한다는 것을 의미한다.

[그림 3]에는 전체 입자가 1.5 μm인 CaCO3-CaSO4 혼성입자에 대한 Monte Carlo 계산 결과를 보이고 있다. 전체 입자는 1.5 μm로 유지하면서 CaSO4 표면층의 두께를 변화시키며, Monte Carlo로 계산한 X-선 세기 값과 측정한 X-선 세기 값과의 비율을 일차전자의 에너지가 5와 10 kV의 경우에 도시하였다. Ca와 O 원소의 비율은 CaSO4 표면층의 두께가 변화할수록 거의 일정하게 유지되고 있고, 이는 Ca와 O 두 원소 모두 표면층과 입자 내부에 비슷하게 존재하고 있기 때문이다. C 원소의 경우 CaSO4 표면층의 두께가 감소할수록 계산값이 증가하고 있고, S의 경우는 그 반대로 계산값이 감소하고 있다. 이는 C 원소가 입자 내부에 존재하고 S 원소는 표면에 존재하기 때문이다. 각 원소에 대하여 계산값과 측정값이 가장 근접하는 것은 5 kV의 경우 표면층의 두께가 75 nm인 경우였다. 일차전자의 에너지가 10, 15, 20 kV일 경우에 측정값과 계산값이 가장 근접하는 경우는 표면층의 두께가 각각 140, 120, 130 nm일 때이고, 모든 경우에 각 원소의 측정값과 계산값과의 차이는 20%이내이다. 비록 5 kV의 결과가 다른 결과들과 차이를 보이지만, 본 연구의 결과는 혼성의 단일입자를 정량적으로 분석할 수 있음을 처음으로 보인 것이다. 하지만 본 연구 결과에서는 나타난 계산값과 측정값의 차이에 대하여, 그 요인으로써 CaCO3-CaSO4 혼성 입자에서 두 화학종의 경계가 투명하지 않을 가능성이, 표면층에 H2SO4 화학종이 존재할 가능성이, 그리고 Monte Carlo 계산이 정확하지 않을 가능성이 있고, 이것에 대하여 더 연구가 진행되고 있다.

참고 문헌

Proceeding of 31th Meeting of KOSAE (2000) - 88 -
Figure 1. X-ray spectra for a spherical particle of 1.5 um diameter at the different primary electron energies.

Figure 2. Calculated atomic fractions of each elements, normalized to a maximum, when CaCO$_3$-CaSO$_4$ single particle is assumed homogeneous.
Figure 3. Ratios of simulated-to-measured X-ray intensities with the variation of the CaSO₄ surface thickness for a spherical CaCO₃–CaSO₄ particle of 1.5 um diameter (A) with 5 kV primary electron energy beam and (B) 10 kV.

(A)

Primary Electron Energy = 5 kV

(B)

Primary Electron Energy = 10 kV