WMS의 성능 분석을 위한 에이전트 시스템

박정윤*, 김종환
한국외국어대학교 컴퓨터공학과
belle@cse.hufs.ac.kr jhkim@hufs.ac.kr

An Agency System for Performance Analysis of WMS

Jeong Yun Park*, Joong Hwan Kim
Dept. of Computer Science & Engineering, Hankuk University of Foreign Studies

요 약
현재 VoD 시스템은 마이크로소프트(Microsoft Corporation)에서 제공하는 WMS(Windows Media Server)를 사용하여 많이 구축하고 있다. 이에 시스템의 QoS는 WMS의 성능에 크게 의존하기 때문에 WMS의 성능을 전제로 분석할 필요가 있다. 본 연구에서는 WMS의 성능 분석을 위해 제안된 에이전트 시스템 모델(agent system model)의 WMS와 인텔리언스를 하는 에이전트-agency 부분을 개발한다. 에이전트는 WMS가 클라이언트들에게 스트림 서비스를 제공하는 환경을 모니터링하고, 성능 분석에 필요한 데이터를 수집하여 저장하고, WMS가 성능 향상을 위해 필요한 조치를 수행하게 된다.

1. 서론
VoD 서비스는 지나간 방송이나 시청이 되지 않는 다양한 채널의 시간과 장소의 제약 없이 언제든지 즐길 수 있도록 제공한다. 현재 VoD 시스템은 마이크로소프트(Microsoft Corporation)에서 제공하는 WMS(Windows Media Server)를 이용하여 많이 구축되고 있다. 이에 시스템의 QoS(Quality of Service)는 WMS와 제한된 공용 자원 환경에서 클라이언트들에게 전달된 스트림 서비스의 제공을 담당하게 된다. 즉, QoS 보장을 위해서는 클라이언트들의 스트림 서비스 요청을 받는 WMS로부터 제한된 시간과 공간의 스트림 서비스 제공에 영향을 미치는 요소를 수용하는 방법을 결정하고 성능 향상을 위해 필요한 조치를 수행하게 한다.

운용 환경은 동시에 서비스 받을 수 있는 최대 허용 스트림의 수는 일정하며, 일정한 개수의 ASF 파일 저장 장소로부터 스트림 데이터를 제공 받는 경우로 제한하였다.

![ASF 파일저장 장소](image)

그림 1. 에이전트 시스템 모델

에이전트는 그림 2와 같이 크게 데이터 수집 모듈과 실행 모듈로 구성되어 있으며 각 모듈들이 연동하는 기능은 다음과 같다. 먼저 데이터 수집 모듈은 데이터 수집을 위한 파라미터 설정과 성능 분석, 예의 갱신으로 이루어진다. 데이터 수집 모듈은 WMS의 수집 모듈을 모니터링하여 논작 중인 클라이언트들의 서비스 요청을 제어하고 인텔리언스를 통해서 WMS의 실행 계산에 필요한 조치를 결정하게 된다. 개발에 사용된 WMS의

* 한국외국어대학교 컴퓨터공학과
본 논문은 2001년도 한국외국어대학교 교내 학술연구비 지원에 의하여 연구되었다.
수 있는 최대 스트림 개수 (WS) 등의 데이터를 수집한다. 이 때 WS는 일정한 제한이 있으며, 요청된 요소는 WMS로부터 서비스 거래되어 손실된다. 수집된 데이터들은 성능 분석 데이터베이스에 저장하고, 평균 대기시간과 장애율을 추정하기 위해 추정 모델로 전달된다. 그리고 실행 모델은 인텔리전스로부터 WMS의 성능 향상에 필요한 조치를 취하기 위해서 WMS가 실행하고 있는 기능을 한다.

2. 데이터 수집 방법

2.1. 데이터 수집 메커니즘

- **OnClientConnect**: 클라우드가 WMS와 연결.
- **OnClientDisconnect**: 클라우드가 WMS에서 연결해제.
- **OnClientPlay**: 클라우드이벤트가 요청자로 재생.
- **OnClientStop**: 클라우드이벤트가 요청자로 재생을 중지.

그림 2. 데이터 수집의 구조

표 1. 클라이언트 이벤트를 이용한 분석자료 획득

그림 3은 데이터 수집 메커니즘을 모니터링하여 얻은 결과를 보여준다.
2.2 성능 분석 데이터베이스

데이터 수집 엔진에 의해 수집된 성능 분석 자료들은 성능 분석 데이터베이스에 저장되며 그림 4와 같은 ER(entity relationship) 모델로 표현된다. 성능 분석 데이터베이스의 구성 엔티티(entity)들은 stream_data와 analysis_data이며 stream_data의 속성(attribute)들은 s_id, stream의 제목(title) 그리고 상태(status)는 TWA, TWS, NWST, MS, w_time, bck_p로 구성된다. 그리고 stream_data 엔티티와 analysis_data 엔티티는 str-ani로 관계(relationship)를 이룬다.

그림 4. 성능분석 데이터베이스의 ER 모델

성능 분석 데이터베이스는 그림 5와 같이 설계될 수 있는데 stream_data 테이블의 기본키(primary key)는 s_id이며 analysis_data의 기본키는 c_id이다. 각 테이블들은 조인(join)되어 실행에 필요한 자료들을 추출할 수 있다.

```
<stream_data 테이블>
  s_id, title, location
<analysis_data 테이블>
  c_id, s_id, TWA, TWS, NWST, MS, w_time, bck_p
```

그림 5. 성능 분석 데이터베이스의 설계

2.3 실행 모델의 기능

실행 모델의 기능은 인텔리전스의 추진 모델로부터 성능 향상에 필요한 조정을 통해 WMS가 이를 실행할 수 있도록 인터페이스를 하는 것이다. 본 연구에서는 성능 분석 예측모델 예측한 부담을 계산하여 인텔리전스의 구체적인 구조와 기능에 따라 세부 기능이 정립될 수 있게 기능의 구조와 같이 정립한다.

* 이벤트 공지: WMS에 도착한 클라이언트들의 요청이 평균 대기 시간보다 길어질 경우 WMS가 클라이언트의 모니

```