Hyperbolic 시각화기법을 이용한 제어 인터페이스
설계 및 구현

최인관*, 이재관 전서현
동국대학교 컴퓨터공학과
(goldcik, jklee, shcheon1)@gdu.edu

Design and Implementation of Control Interface
using Hyperbolic Visualization

In-Kwan Choi*, Jae-Kak Lee Suh-Hyun Cheon
Dept. Computer Engineering, Dongguk University

요 약

복잡한 제어가 필요한 설비의 운전 정보나 네트워크 연결 상태 또는 웹 문서간의 정보 등을 제공한 형
용은 화면에 효과적으로 제어하는 시각화 기법에 관한 논의가 활발히 진행되고 있다. 이 경우 현실에 전
체 정보가 제한의 구조로 파악하도록 하는 환경을 제공하며, 사용자에 관한 정보에 대해서는 전체 정보
제거 구조로 유지하면서 보다 상세히 그 내용을 보여주는 그래픽 기반의 사용자 인터페이스 환경의 개
발이 필요하다. 이에 방곡선 기하학(Hyperbolic Geometry)을 기반으로 한 시각화기법으로 새로운 제어
환경을 구현하여 사용자의 편의를 도모하도록 한다.

1. 서론

제한된 화면을 통해 보다 많은 정보를 사용자가 쉽게 볼 수 있고 이해 할 수 있는 사용자 인터페이스에 관한
연구가 활발히 진행되고 있다[1][2]. 사용자 인터페이스는 이미 기본 데스크탑 화면에서 그래픽 방식의 환경
으로 바뀌었으며, 사용자가 좀 더 쉽게 정보를 활용할 수 있도록 Tree와 같은 계층 구조로 정보를 화면에 표현
하고 있다. 하지만 현재의 많은 사용자 인터페이스에서는 시스템 제어이나 혹은 웹 문서, 시스템 운영 실명서 등
의 많은 양과 서로 연관 관계를 나타내는 문서를 제공한 컴퓨터 화면에 모두 표현하기에는 어려움이 있다. 이를
해결하기 위해 스크롤과 같은 방법을 이용하지만, 이 방
법은 전체 정보의 계층 구조 관계를 한눈에 파악하기 어
려다는 문제를 안고 있으며, 다른 문제점으로는 트리 구조
외에 사이클이 존재하는 그래프 구조에 정보를 표현
하는 데 부적당하다.

윈도우즈로 대변되는 WIMP(Windows, Icons, Menus, Pointers)라는 벤더 방식의 인터페이스에 대한 특정 용용
문서에서의 단점 때문에 이제는 모든 정보를 표현하는 새로운 시각화가 필요하다는 인식이 폭넓게지고 있다
[3].

따라서 전체 정보를 한눈에 파악할 수 있고 특정 계층
구조에 제한하지 않는 방법이 필요하다. 이와 더불어
이러한 정보를 화면에 효과적으로 제공하는 방법이나,
사용자가 관심을 두는 정보를 좀 더 상세히 보여주는 사
용자 인터페이스 환경이 필요하다. 각종 제어의 운전 정
보, 제어의 제어를 위한 제어판 등을 설계하는데 있어
 중요한 것은 보편적으로 사용자가 정보를 쉽게 이해할
수 있어야 하며, 제한된 컴퓨터 화면의 공간을 효율적으
로 사용하여야 한다. 또한 실시간 처리에 효과적이어야
하며, 빠른 속도를 위해 복잡한 수식을 피해야 한다.

이에 본 논문에서는 기존의 많이 쓰인 시각화 방법
대신 방곡선 기하학(Hyperbolic Geometry)자를 이용한
시각화 방법을 제시하여 사용자가 이해하기 쉽고 사용하
기 편리한 시스템 제어 환경을 설계, 구현하였다.

논문의 구성은 2절에서는 관련 연구에 대해 나열하고 3
절에서는 실제 방곡선 기하학을 이용한 정보 처리, 제어
를 위한 시스템 환경에 대한 설계와 구현을 설명한다.
마지막으로 4장에서 결론을 끝낸다.

2. 관련 연구

기존의 시각화 방법은 트리맵[5], 프레임[6], 애런렌즈
(Fisheye)[7] 등의 방법 등이 있으며 이중 애런렌즈를 제
외한 방법은 모두 2D 화면이다.

트리맵 시각화 방법은 필 다이어그램(Ven diagram) 방
식을 공통으로 사용한다. 이 방법은 전체 반점 사이의 높이
또는 좌표와 하이라인의 수에 따라 완전 공간을 형성한다.
정보 표현은 100% 할 수 있으나, 그 트리맵 구조의 이해가
어려운 경우 어떤 부분의 정보에 대해 내용의 손실 없이
초점을 갖는 방법이 제공되지 않는다.
프랙탈 시각화 방법은 자기 유사성(self-similarity)을 바탕으로 한다. 트리형에서 생성하는 단점을 보완한 방법 중 하나이다. 프랙탈 방법은 한계에 많은 양의 정보를 나타낼 수 있는 경우나 이상적인 점을 가진다고 볼 수 있다.

아인레인즈 시각화 방법은 기하학 변형을 통해 일반 좌표에 놓은 정보들을 아인러프로 무궁이 주는 방법이다. 이때 변형의 기준은 사용자가 정해준 형태에 따라 변형된다. 간단한 수식에 따른 빠른 정보 표현이 장점이다.

방대한 기하학적 이상한 시각화 방법은 평면상에 정보를 표현하고 이 평면을 원형의 공간에 매핑 시킨다. 나타내고자 하는 정보는 화면상에서 하나의 노드로 표현된다. 노드들은 방대한 기하학에 의해 각각의 위치가 변형되면서 화면상에 나타난다. 방대한 기하학을 이용한 시각화 기법은 일반 유플러드 좌표계를 비-유플러드 좌표계로 변환시키는 것이다. 그러면, 유플러드 평면상의 점이 구체적 사례로 변환되면서 그 위치를 정확히 된다. 이 때 이용되는 모델들이 Klein Model, Upper Half Plane Model, Poincare Model 등이다[8].

이 방대한 기하학적 제한의 시각화 방법은 정보의 원형의 바탕으로 갈수록 표현되는 정보의 크기가 작아지고 많은 정보들 화면에 표현할 수 있다. 이러한 방법의 장점은 전체 정보들간에 연관관계를 보여주면서 사용자의 관점의 초점을 이용하여 다른 시각화 방법과는 달리 자연스럽게 통일된 방식으로 정보를 표현한다는 것이다. 또한 이 시각화 방법은 평면상에서 원의 반지름 을 증가시켜 화면 공간을 더 활용할 수 있다.

표 1은 각 시각화 방법을 비교한 것이다.

<table>
<thead>
<tr>
<th>기법</th>
<th>트리형</th>
<th>트리형</th>
<th>복사공간화</th>
<th>아인 러프</th>
</tr>
</thead>
<tbody>
<tr>
<td>화면 길이</td>
<td>100% 이상</td>
<td>50% 미만</td>
<td>50% 미만</td>
<td>100% 이상</td>
</tr>
<tr>
<td>정보의 이해</td>
<td>시간의 걸림</td>
<td>특이 기반</td>
<td>특이 기반</td>
<td>시간의 걸림</td>
</tr>
<tr>
<td>조절</td>
<td>준정하지 않음</td>
<td>준정하지 않음</td>
<td>준정하지 않음</td>
<td>준정하지 않음</td>
</tr>
<tr>
<td>해결</td>
<td>없음</td>
<td>없음</td>
<td>없음</td>
<td>없음</td>
</tr>
<tr>
<td>3D 지원</td>
<td>없음</td>
<td>없음</td>
<td>없음</td>
<td>없음</td>
</tr>
<tr>
<td>정보 구조</td>
<td>트리</td>
<td>트리</td>
<td>트리</td>
<td>트리</td>
</tr>
</tbody>
</table>

표 2는 그림의 전체 구현을 나타낸 것이다.

3.1 tree 생성

그림 3은 실제 데이터베이스 파일로 다이어그램 정보를 얻는 방법을 제시하고, 그 다음에 나타나는 정보를 화면에 나타내는 방법에 관한 순서이다.

먼저 세이브에 대한 정보를 제공할 수 있는 정보들을 다이어그램으로 나타낸다. 기체의 이름과 그에 따른 관계자, 오류의 유무 등 정보를 나타내는 노드의 성격도 중요하다. 화면에 나타내고자 하는 정보에 따른 다이어그램을 이용하여 실행하고, 생성된 Tree는 Tree Viewer를 통해 3D 형식으로 구체화할 수 있다.

3.2 Tree 구현

본 논문의 구현에서는 기존의 시스템과는 달리 CRT 화면에 나타난 그림의 화면이 실제 계임을 받아온 전환, 즉 사용자에게 실제 계임을 받아온 전환, 즉 실제 사용자의 해석에 따라 변하는 정보들은 일반적으로 지속적으로 유지하도록 한다. 따라서 화면에 나타나는 정보는 기능적 또는 계임에 따라 변한다. 상황에 따라 다른 정보가 나타나도록 구현한 것이다. 정보를 화면에 효율적으로 배치하는 것을 현재 이용하고 있는 알고리즘은 중요하게 고려해 보았다. 본 논문의
4. 결론 및 향후 연구

기존의 시각화 방법은 점정 증가하는 정보량에 제한된 컴퓨터 화면의 표시에 한계가 있었다. 이런 환경에서는 사용자가 원하는 정보를 검색적으로 상세하게 보여 주지 못한다. 현재 이와 같은 환경을 개선하려는 노력들은 이 시도의 결과로 이루어지고 있다. 콘텐츠 기반학습을 이용한 시각화 방법을 통해 대형 기계의 제어를 관리하게 할 수 있을 것이다. 공간의 간직들의 연관된 상태를 계층적으로 표현하며 액자 볼 수 있어, 만약 시스템의 한 부분에서 오류가 생겼을 시 연계된 다른 기계들에 대한 파악도 빠르게 할 수 있다. 이러한 특징을 감안하여 본 데, 이러한 인터페이스는 비즈니스 인테리뷰스, 컨태스 관리, 네트워크 관리, 전자 상거래와 같은 많은 분야에서 그 활용성을 넘어 끝내 있을 것이다.

참고문헌


3.2 그 외의 기능

데이터베이스 파일로 생성된 정보는 Viewer를 통해 보여질 수 있다. 새로운 정보의 추가나 삭제 등의 수정 작업은 데이터베이스 파일을 직접 변경하여 나타낼 수도 있다. 하지만 좀 더 빠른 인터페이스를 위해 Viewer 상에서 추가, 삭제 등의 기능을 실행할 수 있다. 이러한 기능에 의해 변경된 데이터베이스는 현재 Tree 생성기에서 다시 구조화하고 Database Writer를 통해 저장하게 되며 Viewer를 이용하여 화면에 표시될 수 있게 된다.

사용자가 현재의 제어 구조에서 원하는 정보가 있을 경우 찾아올 수 있는 Find 기능과, 정보가 많거나 적을 경우 이를 원활히 탐색하기 위한 노드간의 거리를 결정할 수 있는 기능이 있다. 이러한 기능들을 통해 제어의 제어를 관리하는 사용자는 노드들을 드래그 하여 올직일 수 있고 끝나 조작할 수 있다.

그림 3은 구현된 프로그램을 실행한 모습이며, 그림 4는 노드들을 Trans 한 후 모습을 보여주는 것이다.