패칭에서의 VCR 지원 방법
조성석, 마현수, 장지훈
한국전산통신연구원, 한국과학기술원
(csocho, pmah)@etri.re.kr, jhkuang@cs.chungnam.ac.kr

Supporting VCR Operation in Patching
Chang-Sik Cho, Pyeong-Soo Mah, Ji-Hoon Kang
Korean Electronics and Telecommunications Research Institute, ChungNam National University

요 약
VOD 서비스에서 멀티캐스팅 기법을 적용하여 여러 클라이언트가 동일한 스톡을 공유함으로써 네트워크 대역폭을 절약하는 연구가 활발해졌다. 배정 범위는 기존에 사용되어 있는 멀티캐스팅 스톱을 공유하여 디스크에 임시로 저장하고, 별도의 채널을 생성하여 공유가 불가능한 초기 대형 스톱을 습득하여 제공한다. 초기 배정에 대한 채널의 빈 공간을 빈 공간을 활용해 배정 범위를 확장하며 True VOD를 지원한다. 본 논문에서는 패칭 방법의 VOD 시스템에서 VCR 연산 지원 방법을 제시한다. 멀티캐스팅 환경에서의 VCR 연산은 멀티캐스팅 채널에 대한 관리를 개별 클라이언트에 대한 세션 정보의 효율적인 관리를 통해 가능하고, 지원하는 종류로는 참조(일시정지 제한, 일시정지 및 일시정지 제한, 중복정지 제한)가 있다.

1. 서 론
ADSL과 케이블 모델에 대한 기술이 발전함에 따라 VOD 서비스는 점차 중요한 위치를 차지하고 있으며, 유소형, 원격 교육, 디지털 라이브러리 등 다양한 분야에서 적용되고 있다. 반도드름이 늘어 네트워크 대역폭 요구를 해결하기 위해 스톱을 공유하는 멀티캐스팅 기법에 대한 연구가 활발하게 진행되고 있다[1,2,3,4,5].


본 논문에서는 학교나 회사와 같은 중소 규모의 조직에서 교육용 VOD 시스템 구축에 목적으로 한다. 중소 규모의 클라이언트를 이용하기 위해서는 브로드캐스팅 보다 멀티캐스팅이 유용하다[4,5]. 패칭과 달리 배정[1,2,4,5]에서는 기존의 멀티캐스팅 채널에서 공유 가능한 스트림을 수신 받고 별도의 채널을 생성하여 공유 불가능한 부분의 데이터에 대하여 추가 수신하여 제시한다. 패칭 방식은 멀티캐스팅 방식을 사용하여 네트워크 중앙을 하는 효과적이고, 개별 사용자에 목표적인 서비스 시각을 가능하게 하여 True VOD를 지원한다. 또한 비디오 비디오에 대해서도 서버의 네트워크 시간을 절약할 수 있는 효과적인 방식이다.

VOD 서비스에서의 VCR 연산 지원은 서비스의 효율성을 높여준다. 서버는 멀티캐스팅 채널에 대한 관리와 다들에 개별 클라이언트의 세션에 대한 관리를 필요로 한다. 본 논문에서는 패칭 기법에서의 VCR 연산을 지원하기 위한 방법을 제시한다. 지원하는 VCR 연산의 종류로는 재생, 일시정지, 정지, 참조(일시정지 제한)가 있다.

본 논문의 구성은 다음과 같다. 2절에서는 패칭 기법 및 유의에 대하여 설명하고, 3절에서는 VCR 연산에 필요한 서버의 스케줄링 알고리즘을 설명한다.

2. 패칭
패칭에서는 서버로 요청하는 클라이언트에 대해서는 멀티캐스팅 채널에 생성하고, 이내는 채널을 정규 채널이라 한다. 동일한 비디오를 요구하는 클라이언트의 요구는 정규 채널에서 공유하여 다스크에 저장하며, 공유가 불가능한 부분은 새로운 패칭 채널을 생성하여 사용한다. 패칭 방식은 패칭 채널에서 자동화된 데이터를 사용하여 이후 정규 채널에서 변환한 다스크에 저장된 비디오 데이터를 재생하게 된다. 패칭 채널에 서버를 수행하는 구간은 패칭 구간(Patching Interval)이다. 패칭 구간의 시간을 패칭 길이(Patching Length)라 한다.

패칭에서 클라이언트는 채널 두 개의 채널에서 동시에 스트림을 수신 받는다. 클라이언트는 동일 비디오에 대하여 정규 채널 하나로 존재한다. 그러나 시간이 지남에 따라 공유 가능한 정규 채널은 줄어 들어 패칭 스톱의 값을 추적하기 때문에, 계속적인 배정 채널이 필요한 오프라인 메트릭 채널 사용의 중단은 경제적이다. 따라서 배정이 가지기더라도 정규 채널 비용이 발생하여 이로 인해 발생하는 클라이언트의 정규 채널은 많이 공유하게 하는 것이 유리하다. 정규 채널에 대해 새로운 정규 채널을 생성하는 기존 채널에 공유되는 것이 전체 채널 사용량을 줄일 수 있는 시점을 정규 채널의 패칭 가능 시간(Optimal Patching Enable Time)이다.

특정 비디오 i에 대해 다스크에 대역폭 사용이 최소로 만드는 배정 가능 범위의 i의 비디오에 대한 오공률 둘러 비디오의 크기 Li에 따라 최적화된 값을 가지는 함수로 나타

184
3. 캐스팅 알고리즘

비디오 데이터에 대한 재생 손실률(playback rate)을 만족하는 네트워크 대역폭을 갖는 네트워크에서 논리적 채널이 단순한 비디오 흐름이 전송하는 허용된 대역폭에만 임의의 비디오 스트림을 제공할 수 있는 능력을 의미한다. 비디오 데이터의 손실은 여러 가지 원인이 있을 수 있으며, 일반적으로는 네트워크 상에서의 손실 유무에 따라 비디오의 재생 성능이 크게 달라질 수 있다. 따라서 비디오 재생 시스템의 결함을 최소화하기 위해서는 비디오의 손실을 미리 예측하고, 이를 극복하기 위한 전략이 필요하다.

VCR 선택을 고려할 때, 시청자가 읽는 시간에 따라 선택된 채널의 정보 손실율을 고려해야 한다. 비디오 손실율은 비디오 처리 채널의 손실율에 따라 다르며, 비디오 손실율은 비디오 데이터의 손실률과 비례한다. 따라서 비디오 처리 채널의 손실률을 최소화하기 위해, 비디오 초당 손실율을 최소화해야 한다. 비디오 초당 손실율은 비디오 처리 채널의 손실률에 따라 다르며, 비디오 초당 손실율은 비디오 처리 채널의 손실률과 비례한다. 따라서 비디오 초당 손실율을 최소화하기 위해, 비디오 초당 손실율을 최소화해야 한다.

3.1 점프(JUMP) 연산 알고리즘

점프는 비디오 재생 중에 클라이언트가 입력의 위치로 비디오 재생 위치를 이동하는 것을 의미한다. 점프(STOP) 연산은 클라이언트가 비디오에 대한 재생을 중지하고 비디오 재생 위치를 입력으로 설정하는 연산으로, 점프 연산은 점프 연산으로 시작한다. 클라이언트는 시청자 ID와 점프 위치를 넘겨주기 시점부터 재생, 폐쇄, 점프, 재생 위치를 입력으로 설정하는 연산으로, 점프 연산은 점프 연산으로 시작한다. 클라이언트는 시청자 ID와 점프 위치를 넘겨주기 시점부터 재생, 폐쇄, 점프, 재생 위치를 입력으로 설정하는 연산으로, 점프 연산은 점프 연산으로 시작한다. 클라이언트는 시청자 ID와 점프 위치를 넘겨주기 시점부터 재생, 폐쇄, 점프, 재생 위치를 입력으로 설정하는 연산으로, 점프 연산은 점프 연산으로 시작한다. 클라이언트는 시청자 ID와 점프 위치를 넘겨주기 시점부터 재생, 폐쇄, 점프, 재생 위치를 입력으로 설정하는 연산으로, 점프 연산은 점프 연산으로 시작한다. 클라이언트는 시청자 ID와 점프 위치를 넘겨주기 시점부터 재생, 폐쇄, 점프, 재생 위치를 입력으로 설정하는 연산으로, 점프 연산은 점프 연산으로 시작한다. 클라이언트는 시청자 ID와 점프 위치를 넘겨주기 시점부터 재생, 폐쇄, 점프, 재생 위치를 입력으로 설정하는 연산으로, 점프 연산은 점프 연산으로 시작한다. 클라이언트는 시청자 ID와 점프 위치를 넘겨주기 시점부터 재생, 폐쇄, 점프, 재생 위치를 입력으로 설정하는 연산으로, 점프 연산은 점프 연산으로 시작한다.
4. 결론

패킷 방식은 멀티캐스트 방식을 사용하여 네트워크 비용을 줄이는 효과와 더불어 개별 사용자에 추적 대기시간을 최소화하는 장점이 가지고 있다. 또한 비빈고 비디오에 대해서도 서비스 네트워크의 자원을 절약할 수 있는 효과적인 방식이다.

VOD 서비스에서는 스트리밍 방식을 사용하여 인터넷 비용을 줄이는 효과와 더불어 개별 사용자에게 추적 대기시간을 최소화하는 장점이 가지고 있다. 또한 비빈고 비디오에 대해서도 서비스 네트워크의 자원을 절약할 수 있는 효과적인 방식이다.

VOD 서비스의 QoS 지원은 서비스의 필요성을 높일 수 있다. 멀티캐스트 방식에서는 VOD 이벤트 지원은 기본의 유니버스 채널에서 보다 직접적이다. 멀티캐스트는 여러 클라이언트가 동일한 채널을 공유하는 것은 VOD 채널은 개별 클라이언트에 대한 정보가 적절한 채널과 서비스의 관계보다 QoS에 대한 효과적인 관리에 적응하기 때문에 적합한 것으로 보고 있다. 본 논문에서는 패킷 방식에서의 VOD 이벤트를 지원하기 위한 방법을 제시한다. 지원하는 VOD 서비스의 종류는 채널, 사용자, 경향, 클라우드의 위치, 관리 등으로 분류한다.

본 논문의 실험을 위해 스트리밍 서버는 Linux 운영체제의 PC 서버에서 클라이언트는 PC Windows에서 구현하였다. 서버 스트리밍은 MPEG-4[6,7] 비디오와 오디오가 혼합화된 파일을 사용하였다. 논리적인 채널의 각색은 10000개를 사용하였다.

앞으로의 연구 방향으로는 최고가 높아 가까운 연구를 진행할 필요가 있다. 또한 VOD의 전산망에서 멀티캐스트 스트리밍을 사용하여 더욱 효과적으로 실행할 수 있는 방법에 대한 연구가 필요하다.