군산지역 부유분진의 계절적 농도변화와 화학특성

Chemical Characteristic and seasonal trends of airborne particles at Kunsan

오진만, 김득수
군산대학교 토목환경공학부 환경공학과

1. 서 론

도서지역의 경제산업 활동으로 인한 에너지 소비와 교통량의 지속적인 증가는 공해방지와 환경개선 등을 위한 노력에도 불구하고 도시 대기질을 보다 심각한 상태로 오염시키고 있다. 이러한 대기오염물질 중 입자상 오염물질 경우 그 입자의 크기는 100μm보다 큰 것에서부터 0.01μm 정도까지 다양한 크기로서 대기내에 존재하며, 25~10 μm이하의 미세분진은 태양광의 산란 등을 통해 시정을 감소시키고, 대양남해도와 노천을 주어 지구과 대기간의 복사평형에도 변화를 초래한다(김반수 등, 1991: 문길주 등, 1994). 특히 우리나라의 경우 대기중의 분진농도는 적절한 대책을 수립, 이행하지 않을 경우, 인위적 발생원의 증가와 함께 대도시를 중심으로 해마다 증가될 것이 우려되고 있으며, 이에 국내에서 2001.1월 환경법규를 개정, 연간 80μg/m^3 미세먼지를 70μg/m^3으로 강화하는 등 미세먼지에 대해 엄격한 규제를 실시하고 있는 실정이다(대기환경법규 2001). 따라서 이번 연구는 군산시에 위치한 군산대학교 교정에서 2000.2월부터 9월까지 구소량, 저용량 분진검출기를 이용하여 채취된 대기중 부유분진의 농도변화를 분석하고, TSP 및 PM10의 화학성분을 분석하여 군산 지역의 대기질 수준을 평가하였다. 이번 연구를 통해 분리내의 화학성분들과 오염농도와의 상관성 조사는 군산 지역 내 대기 중의 분진 오염도 및 배출원의 파악을 위한 지역대기질의 기초자료로서 활용될 수 있을 것으로 기대된다.

2. 연구방법

대기오염물질 중 입자상물질은 흙질의 파쇄, 선별 등 기계적 처리 또는 연소, 화석, 분해시에 발생하는 고체상 또는 액체상의 미세한 물질을 말한다. 이들은 입자 상태로 대기 중에서 존재하거나 대기중진식(dry) 또는 습식(wet) 점적 과정을 거치면서 지반으로 점착함에 따라 대기 중에서 제거된다. 본 연구를 위한 대기중의 총 부유분진(TSP)과 미세분진(PM10농도) 측정은 주 1회(강수 없을 때) 24시간 동안 수행하였으며, 화재가 있을 경우 계속해서 시료를 채취하였다. 측정지역은 북서쪽으로 약 13km에 군산 국가산업단지가, 남서쪽으로 군산공항이 7km정도에 위치해 있으며, 북동쪽으로는 군산 시내가 위치해있다. 측정장소는 군산시 도심과는远离하지 않으나, 인근에는 농지와 주변이 산으로 둘러싸여져 있어 해안에 있는 공항과 교외지역의 영향을 최소화 할 수 있는 한계한 교외지역의 지형적 특성을 갖추고 있다. TSP의 측정 기구는 일반적으로 사용되는 고용량분진검출기(300ml, Model TE6070)를 사용하였으며, PM10의 포집에 있어 사용한 기구는 PM10 Sampler(AIR METRICS miniVol portable sampler)를 사용하여 포집하였고, 고용량분진검출기는 정기적으로 유효 교정용 기질량을 사용하여 흡입유량을 보정하였으며, PM10 Sampler(Model MiniVol)는 가스탁마를 사용하여 유효을 보정하였다. TSP와 PM10의 분진 농도는 분진체취 전후의 여과자의 질량차와 흡입 공기량을 보정하여 흡입 농도를 구하였다. TSP 여과는 PM10 여과의 크기에 맞는 스테인레스 스팀 편의(47mm)를 제작, 사용하여 본 여과에서 분취한 후 전처리하여 양이온(Na^+, Mg^++, K^+, Ca^2+)은 원자흡광광도계(Atomic Absorption Spectrometer; UNICAM4, Model 939) 그리고, 양이온(Cr^3+, NO_3^-, SO_4^{2-})은 이온 크로마토그래피(Ion Chromatography; DIONEX Model DX-120)로 분석을 하였다.

3. 결과 및 논의

분진 오염도는 TSP, PM10 두 단 복합이(105.31μg/m^3, 75.52μg/m^3) -비교적 시료의 수가 적은 겨울철
52µg/m³) - 비교적 적은 수가 적은 겨울철을 제외하더라도 - 다른 계절보다(여름:78.51µg/m³, 57.52µg/m³, 가을:65.43µg/m³, 56.42µg/m³, 겨울:49.15µg/m³, 34.71µg/m³) 높은 농도를 보였다. 몽골이 타 계절보다 분
진농도가 높았던 이유는 황사현상과 빙하가 날림현상으로 인한 영향 등으로 볼 수 있었다. TSP와
PM10의 분산 대 주요양이온 및 음이온의 농도분포는, 각각Na⁺>Ca²⁺>NH₄⁺>K⁺>Mg⁺와
Na⁺>K⁺>Ca²⁺>NH₄⁺>Mg²⁺와 SO₄²⁻>NO₃⁻>Cl⁻와 SO₄²⁻>NO₃⁻의 분포를 보였다. 이러한 양이온의 분
포결과는 측정지점 입지조건에 따른 것으로 인접한 해양의 영향을 많이 받았기 때문에 사료되며,
PM10의 음이온의 농도가 TSP보다 높았던 것은 TSP의 입자크기 보다 작은 PM10입자의 상대적으로
 큰 비표면적에 의한 이온흡착성과 입자적인 배출원으로부터 배출된 가스상 물질이 입자상 물질로 전환
되는 과정에서 생긴 미세입자의 영향에 의한 결과 때문으로도 생각할 수 있을 것이다. 측정지점내의 대
기질의 평가를 위해 분진농도에 대한 인위적인 영향과 자연적인 영향을 비교·분석하였다. 그 결과 음
이온 중 SO₄²⁻만이 인위적인 배출원에 의한 영향을 많이 받았음을 알 수 있었다. 하지만 전체적인 결
과를 토대로 볼 때 측정지점내의 대기질은 인위적인 영향(비해양기원) 보다 자연적인 영향(해양기원)이
다소 많은 영향을 겪은 것으로 나타났다. 또한 분진농도의 측정·분석 시 TSP와 PM10의 농도 상관성
을 알기 위해 TSP와 PM-10을 월별 평균을 구하여 최저분석을 행한 결과, y=0.36x+33.4의 회귀선식
을 보였으며 상관계수(r²)는0.69를 보여 TSP와 PM10의 상관성은 비교적 높게 나타났다. 본 연구의 측정
결과 측정지점은 입지적 여건에 의해 해양으로 인한 영향을 저해적으로 받은에 따라 야생은 분진의 경
우 심각한 오염수준을 보이지는 않았다. 그러나 지역의 향후 개발 가능성을 고려하고, 지역공단과 국가
공단의 확장을 예상한다면 지역 대기질의 적절한 수준 유지를 위해서 주요오염 물질을 대상으로 하는
지속적인 대기질 감시가

참고 문헌
김필수, 김현호, 오미식: 서울 대기 에어로졸의 농도와 평가성에 관한 연구 대기환경보전학회 Vol 7 No 3, 227-234
정용호, 김태균 1991: 대기오염의 장거리 이동 사례연구; 황사, TSP, Sulphate의 바람직 추적, 대기환경
보전학회 Vol 7, No 3, 197-202
김필수, 김현호, 오미식: 서울 대기 에어로졸의 농도와 평가성에 관한 연구 대기환경보전학회 Vol 7 No 3, 227-234
pollution control association. Pittsburgh, PA, 93-99pp, 179-190pp