Effects of the decorrelation and the noise on the coincidence detection in a optical system with entangled photons

Kim Hyun, Gyeong-hun, Kim Tae-su
Ulsan University, College of Engineering

Kim@uou.ulsan.ac.kr

The experimental setup to observe decorrelation phenomenon is similar to the setup for the two-photon measurement with a partial coherence. The two-photon source is a 2W laser beam passing through a BBO crystal and a 50/50 beam splitter. The two output beams are delayed by a quarter-wave plate and a polarizer, respectively.

The two beams are then recombined and directed to two avalanche photodiodes (APDs) with a 50/50 beam splitter. The APDs are biased at about 500V and have a bandwidth of 10MHz. The output signals from the APDs are amplified and fed to a fast digital oscilloscope (Tektronix TDS 610C) with a bandwidth of 1GHz.

The experimental results show that the probability of coincidence is reduced by about 10% due to the decorrelation phenomenon. The noise level is also increased by about 5dB.

These results indicate that the decorrelation and the noise caused by the two-photon source can significantly affect the coincidence detection in an optical system with entangled photons. Therefore, it is necessary to take into account these factors when designing such systems.
순실은 최소화하는 동신이 가능해진다.
본 연구는 1999년도 한국학술진흥재단의 연구비에 의하여 지원되었음(KRF-99-041-D00220).

Figure 1. 광자쌍의 동시계수 측정을 위한 실험장치도.

그림 2. 두 검출기 D_1, D_2에 광자쌍과 잡음이 섞여서 입사할 때 단일계수의 변화에 따른 동시계수.
(a)는 검출기 D_1에만 잡음이 입사할 때이고, (b)는 D_1과 D_2에 모두 잡음이 입사할 때이다.