선분 간략화와 자동화된 레이아웃을 이용한 지도생성

시스템 설계

박동규
창원대학교 정보통신공학과
dgpark@samin.changwon.ac.kr

A Design of Map Generation System using Line Simplification and Label Layout

DongGyu Park
Dept. of Information and Communication Engineering, Changwon National University

요 약
지리정보시스템(GIS)에서 사용하는 지도는 여러 가지 목적의 종용 프로그램이나 지도의 축적등에 따라서 다양하게 나타난다. 본 논문은 지리정보 시스템에 사용되는 지도중에서 관광안내지도를 대상으로 최적의 레이블링과 아이콘 표시방법을 통하여 관광지도 정보를 최적화하여 표현하기 위한 논문이다. 이를 위해서 서울시내의 여러 가지 관광박스의 노선도를 분석하여 이를 최적화된 방법으로 제작하고 표현하는 방법을 연구하였다. 복잡한 박스의 노선은 주요 시설물 중심으로 선분 간략화 알고리즘을 통하여 간략화 하였으며 간략화된 노선에서 중심되는 레이블은 레이블 제작 알고리즘을 이용하여 제작하였 다. 이러한 방법을 통하여 지리정보 데이터베이스로부터 자동화된 방식으로 구조화된 지도를 손쉽게 생성하는 방법을 제시한다.

1. 서론
지리정보시스템이 사용하는 지도는 다양한 형태의 종용 프로그램에 따라 다양하게 변형된다. 또한 동일한 지리의 지형정보라고 할지라도 축적에 따라 지형물이나 표식, 표식에 대한 이름(label)이 나타나기도 하고 사라지기도 한다. [그림 1]과 같은 관광 목적의 지도는 관광코스와 각 코스상에 있는 명소지에 대한 설명을 적절한 레이블링과 아이콘을 통해서 표현할 수 있다. 이와 같은 형태의 지도는 지나치게 복잡한 아이콘과 레이블링으로 인해서 복잡한 도로로 표시하는 경우가 많다. [그림 2] 서울시내 관광박스를 위한 안내지도의 예.

[그림 1] 아이콘과 레이블링을 활용한 런던 Big Bus Travel 지도

[그림 1]의 관광지도는 각 버스노선도에 나타난 유명 관광지와 이 관광지의 레이블링과 그 아이콘을 적절하게 표현되어 있어 지도를 처음 접하는 사용자에게 좋은 정보를 제공하고 있다. [그림 2]는 복잡한 레이블링과 아이콘을 통해서 표현한 지도라고 할 수 있다.

이러한 형태의 지도는 지나치게 복잡한 아이콘과 레이블링으로 인해서 지도를 접하는 사용자에게 효과적으로 정보를 제공하지 못한다. 본 논문은 실제 서울 시내를 운영하는 관광박스 노선도를 바탕으로 이 지도를 간략화하고 간략화된 지도에 대한 적절한 레이블링과 아이콘을 제작한 시스템을 제안하고 구현한다. 본 논문은 다음과 같이 구성되어 있다. 2장에서는 본 논문에 관련된 이전 연구를 소개하고 논의하며, 3장에서는 시스템에서 사용한 간략화, 도식화 알고리즘과 결과를 논의하며 4장에서는 결론과 추후 연구계획을 제시한다.
2. 기존 연구

지도상에 있는 지형물이나 표식에 적절한 위치를 배치하는 작업과 함께 레이블링(labeling)은 오랫동안 숙련된 서지가들의 작업에 의해 이루어졌다. 레이블링에서 중요한 요소중 하나는 레이블이 다른 레이블이나 표식과 중복되지 않도록 하는 것이며, 또한 레이블이 나타나야 할 위치에 적절하게 잘 배치되어야 한다는 것이다[1,2,3,4].

Imhof는 100여까지 이상의 레이블링 배치에 관한 예제를 통과하여 좋은 레이블링과 나쁜 레이블링을 구분하는데 필요한 원 인 요소들을 제시하였다[4]. Edmondson 등은 레이블링 문제가 복잡성을 증명하였으며, 레이블 배치 문제를 효율적으로 해결하기 위한 휴리스틱과 제약조건을 연구하였다[5]. Barkowsky 등은 Discrete curve evolution 방법을 통하여 지형물들을 간략화 한 후 지도상에서 오브젝트를 배치하는 방법을 제시하였다. Edmondson은 실용적인 효율성과 고품질의 레이블링을 동시에 달성하는 확률적 최적화 기법을 구현하였다. 이 방법은 후보 위치생성-위치평가-위치선택 단계를 통하여 최적화된 레이블링 결과를 얻을 수 있었다[6].

3. 지도사각화시스템의 개념구조

본 논문에서 구현한 시스템은 [그림 3]와 같은 단계를 거쳐서 이루어진다. 입력된 원시지도는 버서가 지나가는 위치의 좌표와 주요 노선의 레이블 그리고 이 레이블에 대한 부호로 구성되어 있다. 입력된 메타데이터는 과시에 의하여 분석되며 분석된 메타데이터는 에이드와 주요 지점의 특정점과의 중첩성 검사를 통해서 재배치된다.

레이블링 메타데이터는 각 아이콘과 다시 한 번 중첩성 검사를 실시하여 최종적으로 레이블과 아이콘의 최종 위치가 결정된다.


[그림 4] 본 논문에서 사용한 서울시네 관광버스 노선도

이 지도는 [그림 4]의 노선도에서 특정한 코스만을 뽑아서 간략화 한 것으로 특별한 레이블링 알고리즘이나 간략화 기법을 적용하지 않은 상태에서 간략화한 지도이다.

[그림 5] 서울시내 관광노선 중 월드컵 코스를 시각화한 결과

[그림 5]의 노선도는 Discrete Curve Evolution에서 제시한 선분 간략화 알고리즘에 의하여 [그림 6]와 같이 간략화할 수 있다. 이 방법은 다각형을 이루는 선분들 중
에서 중요도가 높아지는 선분을 선택적으로 제거하는 방법으로 선분을 이루는 한 점에서 이러한 선분의 길이와 그 사이에 각각의 크기를 비교하여 중요도를 매긴다. 두 선분사이의 각각의 애가될 경우 문자보다 중요한 것으로 간주되며, 두 선분의 길이가 긴 경우 높은 선분에 비하여 중요한 것으로 간주된다.

전체적인 지도형태의 완화를 방지하기 위하여 버스 노선도에서 정기장에 해당하는 부분의 정보는 간략화 대상에서 제외하였다. 따라서 [그림 6]와 같이 전체적으로 보아 지도의 특징점이 잘 반영된 형태의 노선도를 얻을 수 있다.

사용하는 지도표현방법에 관한 논문이다. 특히 관광서비스의 노선도를 간략화하고 레이블링한 후 레이블에 해당하는 적절한 아이콘을 시각화하여 차량을 하여금 한 눈에 파악하기 쉬운 관광지도를 자동으로 생성하도록 하였다. 현재 시스템에서 구현된 레이블링과 아이콘 레이아웃은 최적화된 방법으로 배치되지 못했으며 향후 연구를 통하여 보다 정확적으로 나온 형태로 렌더링되어야 한다. 또한 본 논문에서 이용한 제한된 노선도 이외에 전체적인 지형의 간략화와 효과적인 렌더링 기법에 대한 연구가 필요하다.

참고 문헌

4. 결론 및 향후 연구과제
지도상에 존재하는 많은 오브젝트들은 응용 범위에 따라 제한적으로 표시된다. 본 논문은 지리정보시스템에서