제목: 응답 학습 도구 개발을 위한 프로세스

김경수** 신흥호** 반은주** 김영근**
"대구가톨릭대학 컴퓨터공학과" "경인대학교 컴퓨터공학과"
g9320004, g98521022, hangkonl@cath.catholic.ac.kr, **master@hannentor.com

Process for Development of Query-Answer Learning Tool

Jung–So葵 Kim** Ho–Jun Shin Eun–Ju Han Haeng–Kon Kim
"Software Engineering Lab., Dept. Computer Engineering, Catholic University of Daegu"
"Dept. of Computer Engineering, University of Kyungil"

요 약
최근 가상학습에서 학습 기술의 상호 운동성을 기반으로 한 표준화의 필요성을 인식하고 여러 국제표준기관을 통해 기반 환경과 컨텐트 영역 및 활용에 대한 표준화 작업이 이루어지고 있다. 이로 인해 e-learning 분야에서는 국제 표준을 소개하고 체계적으로 AICC(Aviation Industry CBT Committee), IMS(Instructional Management Systems), Global Learning Consortium, ADL(Advanced Distributed Learning)을 중심으로 연구되고 있다. 특히, 미래의 교육 및 e-learning 환경 개발을 위한 기능적 사례 모델로 구성된 LTSA (Learning Technology Standard Architecture)를 제정하고 이를 통한 개발을 지원하고 있다. 이는 e-learning 기술을 위한 규제와 표준을 정의하거나 제정하지 않는 문제점을 가지고 있다. 본 논문에서는 표준 모델링 언어인 UML(Unified Modeling Language)를 통해 모델을 제정하고, 각 프로세스 및 단계를 모델화하여 제정하고자 한다. 또한, 제정된 모델을 기반으로 e-learning 환경을 위한 분석, 설계 표준을 정의하여 이에 대한 사례를 제시한다. 이는 이러한 기술을 기반으로 한 대화형 프로세스를 통한 교육교육의 질을 향상할 수 있는 프로세스의 중대함을 기울릴 수 있으며, 모델의 제작을 요청할 수 있다.

1. 서론
e-learning의 학습 기술 표준화가 국제적으로 급속도로 확산되고 있으며, ITLSA, LOM, SCORM 등과 같은 국제표준기술을 제시한 LTSA, LOM(Learning Object Metadata), SCORM(Shareable Content Object Reference Model) 등이 표준화된 기술로 발달해 왔다. 특히, 이들의 LTSA는 시스템 설계의 모델로 사용하여 현재 개발 방법론의 표준 제시 방법과 맞지 않은 모델로 표준화하였다.[1]
본 논문에서는 표준 모델링 언어인 UML 통해 모델을 제정하고 국제화를 위한 기술적 기준에 따라 학습 도구를 정립하고 제시하였다. LTSA는 학습 활동을 위한 기술적 기준을 마련하고, 학습 기술과 학습 활동을 위한 기술적 기준을 마련한다.

2. 관련역주
2.1. LTSA(Learning Technology Standards Architecture)
IEEE 학술기술 표준화위원회(ISTC Learning Technology Standards Committee)는 국제 교육 기술 직의 표준화를 부각하며 제고하기 위해 ISO/IEC JTC1 SC36(Learning Technology)을 구성하였다. LTSA는 종합적인 교육 기술 표준화를 시스템적이고 조화를 이루며, 학습 및 교육의 필요성을 충족시킨다[2,3].

표준화 목표 및 범위는 제시화 하는 교육기술을 위해 인터넷과 소프트웨어 개발을 통한 모델링을 위해 설계된 장애물의 일부로서 기술적 기준을 마련하였다. LTSA는 학습 기술과 학습 활동을 위한 기술적 기준을 마련하고, 학습 기술과 학습 활동을 위한 기술적 기준을 마련하고, 학습 기술과 학습 활동을 위한 기술적 기준을 마련한다.

2.2. RUP(Rational Unified Process)
기계지능 기반의 소프트웨어 개발 프로세스로 일정의 생활을 향상시키며 소프트웨어 개발의 확장성의 필요를 필연화시켜 높였다. 그리고 이러한 인프라의 필요로 인해 인터넷과 관련된 소프트웨어 개발의 기존의 기관이 논의되고 있으며, RUP는 카탈로그, 내비, 필드 도달을 위한 모델 형식의 기술적 기준을 마련하고, 인터넷 소프트웨어 개발 속도를 높이지 못한다. RUP는 커스터마이징 기능을 제공하며 기존 작업 방
3. LTSA 시스템 컴퓨포넌트 제정의 모델

기존의 LTSA의 시스템 컴퓨포넌트 모델은 자료의 흐름에 기반한 면적형 모델로 전체 거시경관에 적합하지 않고 전체 의미 파악의 이바지가 있다. 따라서, 본 논문에서는 제작자 영역은 시스템 컴퓨포넌트를 기반으로 제작되어야 하며 모델을 제정관한의 모델로 표현될 모델일 UML 개념으로 모델을 구성하여 전체 모델로 모델의 정보를 클래스 다이어그램을 통해 제시한다.

다음(그림 5)은 기존의 자료 흐름 중심의 모델을 UML의 클래스 다이어그램을 이용하여 제정관한 모델이다. 이의 클래스는 프로세스에 대응하며, 프로세스가 기여자와 수용자 앞서는 방향적으로 이에 대한 내용은 순차 다이어그램을 통해 제시한다. 학습자 리코드와 학습 자원은 클래스 표현으로 표준화 SCORM 버전 1.2를 따르게 된다.

다음(그림 6)은 시스템 컴퓨포넌트를 기반으로 교육영역에 적합한 도구로 구성하거나 사용할 경우 사용자 측면에서 고려해야 할 시스템 컴퓨포넌트의 관리를 도식화 한 것이다. 일반 사용자의 경우는 학습자 엔터티(Learner Entity)의 기능 및 구성은 기반으로 구성하여, 교육자의 경우에는 System Coach와 Evaluation의 기능 중심으로 구성되어야 한다. 이러한 사용자 및 구성이 그룹화에 기본 모델이 되며, 다른 사용자 측면으로 확장 및 구성 가능하다.
4. LTSA 기반의 분석, 설계 프로세스

세계적인 시스템 웹포트폴리 모델을 기반으로 교육영역의 지식 도구 및 학습자를 고려한 지식 도구 개발을 위해서 UML 모델 기반의 분석, 설계 프로세스를 다음과 (그림 9)과 같이 제시한다.

이 는 실행 시스템 웹포트폴리 모델을 기반으로 교육영역의 요 구사항을 정의한 모델에 매핑하고 작성된 시나리오를 통해 대상이 되는 사용자 및 도구 기능을 정의하는 것에 초점을 두고 있다. 따라서, 사용자 측면에서는 각각의 구성요소가 구체화되며, 필요한 부분의 구성요소는 시나리오에서 정의된 메시지 흐름에 따라서 작성되고, 추가 및 확장된다.

분석 단계에서는 교육영역의 요구사항 및 영역을 식별하여 사용자의 요구사항을 기술하며, 최소한의 구체성을 기반으로 개발 모델을 작성한다. 작성된 개념모델과 계정된 메타모델을 매핑하여 필요한 구성요소의 구체성을 하여, 시나리오와 장소하여 해당되는 부분의 상세 명세화 된다. 또한, 사용자별 요구사항을 쉽게 식별할 수 있도록 하기 위해 사용자에 따라 다이어그램을 작성한다.

설계 단계에서는 개념모델을 확장하고 정보요소를 조합하여 필요한 구성요소를 명세화하며, 시나리오로 되도록 해답되는 부분을 상세 명세화 된다. 또한, 사용자별 요구사항을 쉽게 식별할 수 있도록 하기 위해 사용자에 따라 다이어그램을 작성한다.

사용자별 요구사항은 개념모델을 확장하고 정보요소를 조합하여 필요한 구성요소를 명세화하며, 시나리오로 되도록 해답되는 부분을 상세 명세화 된다. 또한, 사용자별 요구사항을 쉽게 식별할 수 있도록 하기 위해 사용자에 따라 다이어그램을 작성한다.

5. 결론 및 향후 연구

가장 창의적 학습을 하거나 학습자가 학습 기반의 작용을 효과적으로 진행할 수 있도록 동기 유발을 일으킬 수 있는 교육 컨텐츠가 필요하다. 현재 컨텐츠를 시각화하고 구조화하기 위해서 국제적인 표준이 많이 제시되어 있다. 그중에 IEEE LTSA는 교육 사용자에 대한 표준으로 제시되고 있으며, 모델이 전통적이며, 이해하기 어려게 구성되어 있으며, 적용하기는 적절하지 않은 모델이다.

본 논문에서는 표준 모델링 언어인 UML을 통해서 모델을 제작하고 각 프로세스별 해석을 제시하였다. 그리고 제 작된 모델은 기반으로 가상 교육을 지원하기 위한 분석 및 설계 프로세스를 정의하였다. 또한, 이 텍지들로 기반된 메타모델을 통한 교육영역의 분석 및 설계 프로세스를 정의하였다. 그와 같은 프로세스에 대한 모델 및 정보의 흐름을 모델화하여 시각화하고, LTSA 모델 분석 및 설계를 용이하게 하고, 이해성을 높일 수 있다. 또한, 교육영역의 메타데이터에 쉽게 적용 가능하게 요소의 구조를 내세우고 성능, 구조설계, 사용의 용이성과 이식성을 가질 수 있다. 향후 연구로는 가상 교육의 국제 표준으로 승인된 SCORM 버전 1.2의 메타데이터를 이용하여 제작한 컨텐츠의 작성 및 평가가 이루어져야 하며, 다른 교육지침 도구와의 통합 환경 및 연동에 대한 연구가 수반되어야 한다.

【참고 문헌】