홍채 인식을 이용한 진단 지원 시스템 구현

부산대학교 정보산업대학원, 컴퓨터기계학과
남승우*, 정연철
E-mail: namter*, yjeong@honam.ac.kr

A implement of the Diagnostic Supporting system
Using the Iris Recognition
Seung-Woo Nam*, Yeon-Chul Jeong
Graduate School of the Infomation Industry, Honam University
Division of media, Honam University

초 록

생체 인식 기술이 발전하면서 홍채인식은 보안 분야에 널리 활용되고 있다. 그런데 홍채는 신체의 변화에 대한
신호를 나타내는 중요한 진단 수단이 된다. 따라서 홍채를 활용한 진단 시스템의 개발은 환자의 진단에 필요한
정보를 가시화 할 수 있다. 본 논문은 홍채 인식을 활용한 진단 지원 시스템이다. 홍채 영역을 추출하고 홍채 패턴
을 적합하고 진단에 필요한 정보를 가시화 한다. 또한 홍채의 모양에 따른 정보를 제공하여 다양한 진단 지원 시
스템을 구축한다.

1. 서론

정보기술이 발달하고 컴퓨터 성능의 향상은 초기의 컴
퓨터가 불가능하였던 다양한 분야에 적용되고 있다. 특
히, 사람이 가지고 있는 생체 시그널을 이용한 정보 기
술의 응용이 확대되고 있다. 자문 인식과 홍채(iris)를 아
용한 생체인식(biometrics) 기술은 보안 분야에서 널리
활용되고 있다. 생체인식 기술은 영상 음성 장치를 이용
하여 얻어진 신호를 처리하여 개인이 가진 생체적 특
징을 패턴으로 분류하여 인식한다. 얻어진 패턴은 데이
티베이스로 저장되어 이를 이용하여 줄임 제한과 같이
보안이 필요한 분야에서 널리 활용되고 있다[1].

그런데 한의학에서 홍채는 사람의 몸과 관련된 신호를
나타내준다. 즉, 홍채에 나타나는 신호를 이용하여 진단
에 필요한 정보를 얻을 수 있으므로 이를 이용한 진단
문제가 시스템의 개발은 그 가치가 있다고 판단된다. 또
한 홍채는 동공의 크기 변화등의 과정으로 통해 몸에서
일어나는 변화를 예측할 수 있다는 특징을 갖는다. 따라
서 일정한 간격으로 촬영한 홍채의 영상을 통해 몸에서
일어나는 변화를 예측하여 진단에 도움을 주는 시스템
개발이 필요하다.

2. 관련연구

홍채 인식과 관련된 연구는 특히 보안 시스템에서 많이
활용되고 있다. 홍채인식 홍채패턴을 이용하여 신원을
확인하는 기술로 홍채 패턴은 사람마다 다른 패턴을 가
진다[2][3]. 홍채의 영역을 추출하는 방법은 환경경계 검
출방식과 휘프먼트[4], 레이트差不多 지주 있다.

보안시스템을 구현할 때 홍채 인식은 자문 인식과 달
리 귀결적인 센서 검출장이 없이도 구현이 가능하다는
특징이 있다. 즉, 일정한 홍채 무늬의 패턴만을 사용하기
때문에 홍채 이미지의 품질적인 문제는 크게 문제가 되지
않는다. 그러나 홍채를 이용한 진단 지원 시스템 구현은
인식 장치에 의해 얻어진 이미지의 정밀한 문제가 해결
되어야 한다.

홍채를 이용한 진단은 아만드볼리의 홍채 차트[6]를 주
로 사용한다. (그림1)은 아만드볼리의 홍채 차트의 예이다.
홍채 차트의 각 영역은 우리 몸의 장기와 연관되어
있으며 각 영역에 나타나는 징후에 따라 병을 예측 할
수 있다.
2. 진단 지원 시스템
본 논문은 홍채에 대한 의학정보를 홍채 인식 방법을 활용하여 진단에 필요한 지원시스템을 구축하고 활용하는 것이다.

2.1 시스템 구성도
홍채 활성화를 통해 얻어진 영상은 진단지원 시스템에서 홍채 영역, 동공 영역, 뷰 정합 등의 과정을 거친다.

(그림 2) 시스템구성도
이미지 분석과정을 통해 동공과 뷰체연(홍채의 외가영역)을 나타내는 영어를 추출한다. 추출된 홍채 영역을 이용하여 다양한 진단 지원 시스템의 정보를 추출한다.
특히 사람의 홍채는 사람의 건강 상태에 따라서 나타나는 정보가 시간이 지나면서 달라지기 때문에 이를 활용하여 건강 상태등을 체크할 수 있다. 따라서 홍채에서 언어는 각종 정보를 데이터베이스와 하여 관리하는 것이 중요한 일이다. 또한 제일 시스템은 일종의 진단 지원을 위한 전문가 시스템으로 전문적인 정보가 필요하다. 그러므로 홍채와 관련된 의료정보를 데이터베이스로 생성하고 문서화된 진단 시스템의 결과를 얻을 수 있다.

2.2. 홍채 영역 추출
영상의 각각의 픽셀에 대한 정보를 이용하여 4-방향 연결 알고리즘을 사용하면 다음의 (그림 3.1, 3.2)와 같이 홍채의 영역을 추출할 수 있다.

(그림 3.1) 왼쪽 눈 (그림 3.2) 오른쪽 눈
마찬가지로 동공 영역을 추출할 수 있다. 동공영역이 추출되면 추출된 영역을 이용하여 바나드필슨의 홍채 차트를 적합할 수 있는데 (그림 4.1)은 왼쪽 눈에 홍채 차트를 적합시킨 예이다.

(그림 4.1) 왼쪽 눈 적합
추출된 동공과 뷰체연을 이용하여 비나드필슨의 홍채 차트를 적합시킬 때 홍채 차트는 오른쪽 눈과 왼쪽 눈의
템이 각각 대칭구조를 이룬다. 적합된 흡족 차트의 각 영역은 사람의 신체와 연관되어 정보를 나타내는데 12시 방향은 뒤, 6시 방향은 신체의 하부쪽을 나타내고 사람 이 서있음을 알 수 있게 한다. 그리고 차트의 상하를 잘 구분하여 적합시키아 한다.

(그림 4.2) 오른쪽눈 darm

(그림 5) 자율신경활

원래의 차트에 자율 신경활과 동공의 모양등은 신체의 이 상 정호를 나타내는데 많은 정보를 제공한다. 따라서 (그
림 6)과 같은 영상을 통해 가운데 위치한 수평선을 기준
으로 그래프를 분석하여 신체의 이상정도를 판단할 수
있는 데이터로 활용할 수 있다. 또한 분석 자료를 개인
데이터베이스에 생상하여 진단에 필요한 정보를 자속적
으로 관리할 수 있다.

3. 결론 및 연구 방향

통제 정보를 이용한 진단 지원 시스템의 구현은 의학
적 자료를 활용 가시화하여 진단 결과를 활용한다.

일반적인 보안시스템에서 흡족의 패턴을 사용하여 처리
하는 반면, 진단 지원 시스템에서는 좀 더 세심한 데이터
처리가 필요하다. 하지만 아직도 정밀한 흡족 이미지 처
리하여 다양한 의료 정보를 결합한 시스템을 개발하여야
한다. 또한 정밀한 이미지 처리를 위한 이미지 분석 방
법의 연구도 병행되어야 할 것으로 본다.

참고문헌