동영상 정보 검색 시스템에서 비파 캐시의 효율성 연구

이강휘, 전주탁, 유연승
한림대학교 정보통신공학부
(leekho@, hong4u@)@center.cie.hallym.ac.kr, ysyru@hallym.ac.kr

Study on Efficiency of Buffer Cache for Video Information Search System

Kang-Hee Lee, Joo-Tak Jeon, Yeon-Seung Ryu
Div. of Information and Communication Eng, Hallym University

요 약

동영상 정보 검색 시스템은 비프로젝션의 크기의 동영상 클립을 클립을 인식하기 위해 기 프레임으로 구성된다. 본 논문에서는 동영상 정보 검색 시스템을 위한 비파 캐시에서 비파 캐시의 기법을 연구하였고, 비파 캐시 사용의 효율성을 연구하였다. 실험을 통해 비파 캐시의 성능을 측정하였는 결과 수의 동영상 클립에 효율이 향상되어야 함을 알 수 있었다.

1. 서론

1.1 배경

최근 정보통신의 발전으로 유무선 인터넷에서 실시간으로 동영상 파일을 볼 수 있게 되었으며 유무선 단말기를 사용하여 동영상 정보를 검색하고 실시간은 동영상 정보 검색 시스템과 같은 응용이 증가할 것으로 예측되고 있다.

동영상 정보 검색 시스템은 동영상 정보를 저장하는 저장 시스템(storage system)을 가리키며, 동영상 정보를 검색할 수 있는 사용자 인터페이스 제공한다.[7,9]. 일반적으로 동영상 검색은 기워드를 사용하거나 특정 객체(object)의 모양(shape), 색상(color), 크기 등의 특징(feature)을 사용하여 적절히 포함하고 있는 동영상을 검색한다. 사용자에게 적절히 제공하고 기워드를 입력하면 검색 시스템은 객체를 포함하고 있는 동영상의 기 프레임(또는 대표 프레임)을 찾게 된다. 찾아진 기 프레임 중에서 하나를 선택하면 해당 동영상 정보를 찾아볼 수 있게 된다. 그림 1은 일반적인 동영상 정보 검색 시스템의 기능도이다.

대규모 동영상 정보 검색 시스템은 저장된 동영상의 수 및 저장장치의 동시 사용자 수가 매우 많다. 대규모 저장 시스템을 가리킨다. 저장 시스템에서 동영상 데이터는 디스크에 저장되어 있으며 저장되는 데이터는 대지게, 전악의 비디오 저장소로 사용자에게 제공될 수 있다. 비파 캐시는 입력된 데이터의 비파에 저장하고 이후에 그 데이터가 재조작될 때 디스크가 아닌 비파에서 서비스하기 위한 방법이다. 비파 캐시는 디스크의 읽기 속도가 감소 시험적으로 데이터 읽기 요청에 대한 읽기시간을 줄여 시스템 성능을 향상한다. 그러나, 비파 캐시의 가격이 비싸서 일반적으로 그 용량이 디스크 용량보다 매우 작다. 따라서, 새로운 접근되는 데이터에 의해 바뀌어 저장된 데이터가 교체되며 교체 알고리즘에 따라 비파 캐시의 성능이 좌우된다. 일반적으로 비파 캐시의 데이터 참조의 침착성(locality of reference)이 높을 때 좋은 효율을 보인다.

![그림 1 동영상 정보 검색 시스템의 예](image)

본 연구의 목적이 비프로젝션의 크기의 동영상 객체를 비파로 캐시하므로서 시스템 성능을 측정하는 방안의 효율성을 연구하는 것이다.

1.2 기준연구

지금까지 동영상 저장 시스템을 위한 많은 비파 관리 알고리즘들이 연구되어 왔다[1-4]. 그러나, 대부분은 영 화처리 오랜 시간동안(1시간 이상) 동영상 데이터를 상 장하는 VOD(Video-on Demand) 시스템을 가정한 연구들이었다[1,2]. VOD 시스템의 경우 인터벌(interval) 기법이 매우 좋은 효율성을 보인다. 대표적으로는 인터벌 캐싱(interval caching)[2]와 distance[1] 알고리즘이 있다. 인터벌이란 동영상 파일을 참조하면서 연속된 두 스트림 간의 데이터 불러오기로 정의된다. 인터벌 캐싱[2]는 연속 스트림이 동일한 인터벌에서 접근 데이터에 따라 이후 스트림의 인터벌이 캐시되어 있다면 후행 스트림은 연속 스트림이 읽은 데이터를 비파에서 읽게 되므
로 디스크 입출력을 줄일 수 있게 된다. 인터벌 캐싱은 작은 인터벌을 먼저 캐시하고 비파 동안 부족하면 인터벌이 가장 긴 것을 캐시에서 제거하는 계층적 훜을 사용한다.

인터벌 기법은 많은 수의 스트림이 같은 동영상 파일을 오랜 시간 동안 순차적으로 참조할 때 효율성이 우수하다. 그러나, 빠른 전각기, 정교 등의 VCR 연산이 많은 경우에는 성능이 떨어지게 된다. 최근에는 동영상 파일에 대해 다양한 참조 유형을 고려한 비파 캐시 기법에 대한 연구 결과가 발표되고 있다[5]. 한편, 비파 파일 시스템에서 LRU와 LFU를 결합한 비파 교체 기법도 제안되었다[6]. 본 연구에서는 비교적 짧은 동영상 클립을 서비스하는 시스템에서의 비파 캐시 기법의 효율성을 연구하고자 한다.

2. 시스템 모델

본 비파 캐시 연구에서 가정하는 동영상 정보 검색 시스템은 동영상 파일과 기 프레임(key frame)으로 구성된다. 동영상 정보 검색 시스템의 사용자는 동영상 파일을 검색하기 위해 우선 기 프레임을 구해야 한다. 기 프레임의 검색 방법은 키워드, 객체의 특성(모양, 색상 등)을 사용자에 입력하는 등의 다양한 방법이 있을 수 있다. 찾으려는 기 프레임을 통해서 하나를 선택하면 대응하는 동영상 상영하여 볼 수 있다. 동영상 상영은 장면 검출(scene detection) 기법을 사용하여 작은 동영상 클립(clip)들로 분할되고 장면 검출에서 추출된 기 프레임을 사용하여 동영상 클립들을 인식한다. 동영상에서 장면을 대표하는 기 프레임을 추출하기 위한 다양한 장면 검출 기법들이 연구되어 왔다[8-10].

그림 2. 시스템 모델

그림 2는 본 연구의 시스템 모델을 보여주고 있다. 시스템에서 저장된 동영상 파일의 개수가 M이고 기 프레임의 개수가 N개라고 가정한다. 시스템 전체의 검색 요청의 드로트를 λ (정조수/초)라 하자. 검색 요청 중에서 기 프레임 f를 검색할 확률을 p_f라고 하자. 이때, 기 프레임 f의 검색 도착률은 λ_p이다.

3. 비파 캐시의 연구

3.1 워크로드 모델

비파 캐시의 성능을 조사하기 위해서는 워크로드 모델링이 선행되어야 한다. 여기에는 사용자 검색 요청의 도착률과 기 프레임 선택의 분포를 결정해야 한다. 그러나, 이를 위한 실제(real) 워크로드를 구하기 어렵기 때문에 일반적으로 적용되고 있는 분포함수를 사용한다. 검색 요청의 도착간 시간 간격의 분포는 (식 1)과 같은 지수 분포(exponential distribution)를 사용한다.

$$f(x) = \frac{1}{\lambda} e^{-\frac{x}{\lambda}}$$

(1)

요청의 도착률이 성급한 요청은 시간에 요청이 집중됨을 의미한다. 기 프레임의 선택 확률은 (식 2)와 같은 기하 분포(geometric distribution)를 사용한다. p_n은 n개의 기 프레임에서 기 프레임 f를 요청한 확률이다.

$$p_n = \frac{(1-a)a^n}{(1-a)}$$

(2)

(식 2)의 기하분포에서 파라미터 a값을 변화시키면 요청의 전동(skew)도를 조절할 수 있다. 그림 3은 $a=0.9, 0.99, 0.999$인 경우의 분포를 보여주고 있다. $a=0.9$인 경우 소수 기 프레임에 검색 요청이 집중되며, $a=0.999$인 경우 모든 기 프레임에 균등하게(uniform) 검색 요청이 임파한다.

그림 3. 기하분포에서 퍼미터별 분포도

3.2 비파 교체 정책

대표적인 비파 교체 정책인 LFU, LRU, 인터벌 캐싱 알고리즘을 고려할 수 있다. LFU는 데이터의 참조 횟수가 적은 것을 교체하고, LRU는 가장 오래동안 참조되지 않은 것을 교체하며, 인터벌 캐싱은 두 스트림 간의 인터벌이 적은 것을 교체한다. 본 연구에서는 동영상 클립의 길이를 10조로 가정하고 있으므로 같은 클립에 대해 10조 내에 많은 참조가 발생하는 경우에 효율적이다. 인터벌 캐싱의 경우 한 클립에 10조 내에 요청이 있어야
4. 결론

조교책의 유무선 인터넷이 통합되고 있으며 대규모의 동시 사용자들이 동영상 정보를 검색할 수 있는 동영상 저장 시스템을 이용하여 많은 사용자들은 동영상 정보를 인터넷으로 저장하고 있습니다.

본 논문에서는 대규모의 동영상 정보 검색 시스템을 위한 비교적 작은 크기의 동영상 클립과 클립을 인터넷상에 있는 웨비나 인터넷을 제공하기 위한 프로젝트를 개발하고 있습니다.

본 논문에서는 기존의 교체 기법에서 비디오의 요소들을 활용하고자 하였고, 회귀에는 모델링을 이용한 비디오의 요소들을 활용하였다.