풍속과 풍향을 이용한 대기중 미량금속의 오염원에 대한
예비적인 추정

Preliminary Evaluation of Sources of Ambient Trace Metals using Wind Speed and Wind Direction

장미송, 이진홍
충남대학교 환경공학과

1. 서론
풍속과 풍향은 지역의 오염원 추정에 중요한 변수가 되므로 풍속에 따른 오염품질 농도 및 풍향을 고려한 pollution rose를 통해 기상조건과 오염품질 농도의 관련성을 분석하고, 대상 지역의 오염원을 개관적으로 추정하고자 한다.

2. 연구 방법
PM 10과 미량금속의 풍속 및 풍향별 평균 농도는 아래 식(Eletheriadis et al., 1998; Harrison and Williams, 1982)을 이용하여 24시간 평균 농도를 해당 풍향(16방위) 및 풍속(6단계)의 발생 시간수에 대하여 가중 평균하여 산출하였다.

\[(TWMC)_n = \frac{\sum_{i=1}^{n} (t_i \times c_i)}{\sum_{i=1}^{n} t_i}\]

Where \((TWMC)_n = \) Time-Weighted Mean Concentration for nth sector
\(t_i, n = \) the number of hours during period i that wind is in sector n
\(c_i = \) the 24h concentration during period i

풍속은 Beaufort scale 0(calm) ∼ VI(strong breeze) 계급을 사용하였다. 풍향과 풍속에 대하여 배분된 농도 관계를 살펴볼때서 오의원을 개괄적으로 판단하였다.

3. 결과 및 고찰
PM 10의 경우 무풍 상태 및 0.5 ∼ 2 m/s 이하의 저풍속에서 평균 농도가 가장 높게 나타나 고풍속의 유동에 의한 원거리 오염원보다는 확산에 의한 근거리 오염원의 영향이 다소 크게 작용하였음을 확인하였다. 독성금속 중 Ba, Cd, Co, Mn, Ni, Pb, Sb, Se 등 인위적 오염원에 의해 주로 배출되는 성분은 저풍속 및 무풍 상태에서 농도가 높게 나타났으며 또한, 공단이 위치한 북풍, 북서풍 및 서풍 계열에서 높게 나타나 공단의 영향이 크게 작용한 것임을 알 수 있었다. 알칼리금속인 Al과 알칼리토금속인 Ca, K, Mg, 경급속인 Ti은 고풍속에서 높은 농도를 보여 바람을 타고 이동된 원거리 오염원 및 비산분진에 의한 영향이 큰 것으로 나타났으며, 서풍 또는 북풍 계열의 영향도 있고 있지만 남풍 또는 남서풍 계열의 영향도 크게 작용하였다.
Figure 1. Time-weighted mean concentration for wind speed.

Figure 2. Pollution roses of time-weighted mean concentration for 16 wind direction.

참고 문헌