The fruits of various Actinidia species are known to be used as a folk remedy for treatment of various inflammatory and analgesic ailments. Effects of the ethanol extracts and fractions from the fruits of Actinidia polygama (Sieb. et Zucc.) Maxim (Actinidiaceae) were studied using various in vivo and in vitro models of inflammation in mice and rats. In this study, we have evaluated the anti-inflammatory effects using acetic acid–induced vascular permeability and the carrageenin–induced rat paw edema and the analgesic activity using the formalin test, tail flick test and writhing assays. In addition, to clarify chronic effect, we performed the swelling and toxicity test in the Freund’s complete adjuvant (FCA)–induced rheumatoid rat model. We also investigated the hypouricemic effect of AP on hyperuricemia induced by administration of the uricase inhibitor, potassium oxonate (250 mg/kg s.c., 1 h before the test drugs), and measured the plasma and urine urate in rats. 70 % ethanol extract of AP showed significant analgesic and anti-inflammatory activities in dose dependent fashion. In addition, AP ethanol extract also ameliorated the hyperuricemic state at a dose of 1000 mg/kg, though hypouricemic action of AP was inferior to that of either probenecid or allopurinol.

Effect of the Extract of Cultured Ginseng Roots on Hyperlipidemia in Rats

Yi Eun Jeong1, ZHAO HAILIN1, Li Da Wei1, Paek Kee Yeoup2, Kim Jong Hoon3, Kim Yeong Shik1

1Natural Product Research Institute, Seoul National University; 2Research Center for the Development of Advanced Horticultural Technology, Chungbuk National University; 3EE WOO YANG HAENG Co.Ltd

We have investigated the effect of MeOH extract of cultured ginseng roots on hyperlipidemic rats induced by fat–rich diet. We also analyzed and compared ginsenosides of cultured ginsens by HPLC. After oral administration of the extract to hyperlipidemic rats for four weeks, the variables including body weight, cholesterol, HDL, LDL, and triglyceride levels in serum were measured. One of the cultured ginseng roots (CBN3) decreased cholesterol and LDL–cholesterol and increased HDL–cholesterol levels in serum. HPLC analysis demonstrated that CBN3 contains more Rb1 and Rd ginsenosines than any other cultured ginsengs and cultivated ginseng. These results suggest that CBN3 with high contents of Rb1 and Rd may be useful in lowering blood cholesterol.

Antidiabetic effect and mechanisms of SPH–1 in db/db mice

Kang Kwiman1, Cho HeeJae, Chung SungHyun

1School of Pharmacy, Kyung Hee University, Seoul 130–701, Korea; 2Institute of Science and technology, CJ corp., Kyunggi – Do, Korea

SPH–1 is a herbal medicine composing oriental prescription. We have studied the antidiabetic effect and mechanism of SPH–1 in insulin–resistant diabetic db/db mice. Mice were grouped and treated for 3 weeks as follows: control group was administrated with tap water orally; treated group was administrated with SPH–1 orally at dose of 500 mg/kg. SPH–1 lowered plasma glucose level by 67% as compared to the diabetic control. Total cholesterol, triglyceride and free fatty acid were all reduced in SPH–1 treated group. The control group showed hyperinsulinemia, whereas SPH–1 treatment decreased insulin level by 72% as compared to the diabetic control at the end of treatment. SPH–1 treated mice also exhibited low urinary glucose and albumin level as compared to the diabetic control, in parallel to the plasma glucose concentration. In the mechanism study, PPARγ mRNA expression in epididymal fat were increased in SPH–1 treated group. GLUT4 mRNA expressions in skeletal muscle was also increased in SPH–1 treated group. We have also investigated glucose–6–phosphatase.