Chiral separation of β-blockers after derivatization with a new chiral derivatization agent, GATC and Comparison with GITC on derivatizing conditions and chromatographic parameters

Ko Mi Young\(^0\), Shin Dae Hong, Seo Sang Hun\(^\ast\), Wookaehaw Shibru Asegahegn, Kim Kyeong Ho

College of Pharmacy, Kangwon National University, Yuhan Corporation\(^\ast\)

A new chiral derivatization agent with sugar moiety, 2,3,4,6-tetra-O-acetyl-D-galactopyranosyl isothiocyanate (GATC) was synthesized. Several β-blockers were investigated for the possible separation of the enantiomers by reversed-phase HPLC after derivatization with this new chiral derivatization agent (GATC). GATC was reacted readily with β-blockers at room temperature and the reaction mixture could directly be injected into the HPLC system. The corresponding diastereomers were well resolved on an ODS column with acetonitrile-ammonium acetate buffer as a mobile phase and monitored at UV 254nm. Conditions of derivatization (agent excess, temperature and reaction time) were optimized and compared with GITC.

Narrowbore high-performance liquid chromatographic method for the determination of cetirizine in plasma using column switching

Hyun Myung-Ja\(^0\), Ban Eunmi. Woo Jong-Soo\(^\ast\), Kim Chong-Kook

College of Pharmacy, Seoul National University; Hanmi Pharmaceutical Co. Ltd.

A column switching HPLC assay was developed to allow the separation and quantitation of cetirizine in human plasma by ultraviolet (UV) detection. Plasma samples were prepared by liquid-liquid extraction. After drying, the residue was reconstituted in 20 mM phosphate buffer (pH 2.8) containing 15% acetonitrile. The samples were initially injected onto a clean-up Capcell Pak MF C18 column, (50 mm × 4.6 mm I.D.), and the chromatographic region containing the peaks of interest was followed in an analytical C18 microcolumn (250 mm × 1.5 mm I.D.) via column switching device. The separation of analyte was performed using 20 mM phosphate buffer (pH 2.8) containing acetonitrile (65 : 35) and quantified by monitoring absorbance at 230 nm. The limit of detection of cetirizine in plasma was 2 ng/ml, and the assay was validated in the concentration range of 5–400 ng/ml. It has been applied to determine the concentration of cetirizine in plasma from healthy volunteers dosed with cetirizine dihydrochloride tablets.

Proficiency Test for Pharmaceutical Companies in Analyzing Drug Products (I) – Comparison of Criteria for Satisfactory Test Results

Cho JungHwan\(^0\), Sung JunHyun, Choi SeonHee, Choi JangDuck, Lee SeungKyung, Chae KabRyong, Moon ByungWoo

Sookmyung Women's University, Kyungin Regional Korea Food & Drug Administration

Quality control by analytical ability with a certain level of precision and accuracy is important. This is true especially in pharmaceutical industries, for a failure in quality control can result in a failure in drug medication, in turn, sometimes a heavy damage to patient's health condition and/or the worst damage to company's reputation. On this background, Kyungki KFDA prepared test pharmaceutical products, which were distributed to 114 pharmaceutical companies in Kyungin Province in year 2000. The formulations of ibuprofen and sobrerol were prepared in two different levels of concentration, respectively. Only the mode of analysis was specified with the samples. Ibuprofen samples were instructed to be analyzed by HPLC and sobrerol by GC. Any other details in analyzing samples were selected by analytical personnel of each company. The results of test were analyzed according to FAPAS protocol based on ISO/IEC Guide 43-1:1997 E "Proficiency testing by interlaboratory..."