under different agitation conditions. The permeabilities of some hydrophobic drugs were increased when measured under accelerated agitation. Thus, we studied whether the agitation speed affects the permeability of certain drugs. Then we studied whether there are any relationships between the difference in Papp by the agitation (△Papp) and the hydrophobicity of drugs. Finally, we investigated the effect of agitation on the predictability of in vivo bioavailability of a drug from in vitro permeability of the drug across Caco-2 cell monolayers. The transport of drugs across Caco-2 cell monolayers were examined under two different conditions (60 rpm agitation and no agitation) using a plate shaker. Permeability (Papp) of propranolol, YH439 and phenylpropanolamine were slightly increased by the 60rpm agitation. But, Papp of mannitol, TbuMA, cimetidine, ranitidine, hydrocortisone, theophylline, benzylpenicillin and loxoprofen were not affected by the agitation. There is no significant relationship between the △Papp and hydrophobicity of drugs. In addition, the agitation did not change the relationship between the permeability and the bioavailability of drugs. Agitation did not affect the correlation between in vitro permeability across Caco-2 cells and in vivo bioavailability of drugs. Thus, it could be concluded that agitation during the determination of permeabilities of drugs does not affect the practical predictability. It may not be necessary to consider the effect of agitation in predict in vivo bioavailability of xenobiotics from the permeability of the compounds across Caco-2 cell monolayers.

[PE2-4] [10/18/2002 (Fri) 13:30 - 16:30 / Hall C]

BIOEQUIVALENCE EVALUATION OF TIROPAVINE HCl 100 MG TABLETS IN HEALTHY MALE KOREAN VOLUNTEERS

Lee SukO, Cho HeaYoung, Kang HyunAh, Lee YongBok

College of Pharmacy and Institute of Bioequivalence and Bridging Study, Chonnam National University, Gwangju 500-757, Korea

The purposes of this study were to evaluate bioequivalence (BE) using in-transformed pharmacokinetic parameters obtained from two tiropamidine HCl products and to develop the analytical methods for the quantitative determination of tiropamide in human serum. In addition, the in vitro dissolution profiles of the two tiropamidine HCl products in various dissolution media: pH 1.2, 4.0, 6.8 and water (KPi, Apaturus II method) were assessed. BE was evaluated in 20 healthy male Korean volunteers in randomized crossover study. Single oral dose of 100 mg of each product was administered after overnight fasting. Blood samples were collected at predetermined time intervals and the concentrations of tiropamide in serum were determined using column-switching HPLC method with fluorescence detection. The dissolution profiles of two tiropamidine HCl tablets were very similar at all dissolution media. Besides, the pharmacokinetic parameters such as AUCt, Cmax and Tmax were calculated and ANOVA test was utilized for the statistical analysis of the parameters using logarithmically transformed AUCt, Cmax and untransformed Tmax. The results showed that the differences in AUCt, Cmax and Tmax between two tablets based on the Tirop were -0.51%, -2.93% and 4.69%, respectively. And also, the 90% confidence intervals were within the acceptance range of log(0.8) to log(1.25) (e.g., 0.84-1.02 and 0.89-1.03 for AUCt and Cmax, respectively). Consequently, all parameters met the criteria of revised KFDA guideline for bioequivalence, indicating that Tiropa tablet is bioequivalent to Tiropa tablet.

[PE2-5] [10/18/2002 (Fri) 13:30 - 16:30 / Hall C]

HPLC Determination of Loratadine in Human Plasma with UV Detection and Pharmacokinetics of Loratadine Following Oral Administration of Tablet Formulation in Human

Cho EunSookO : Chun InKoo

College of Pharmacy, Dongduk Women's University, Seoul 136-714, Korea

A validated UV determination of loratadine in human plasma was developed and the pharmacokinetic profiles of single dose of loratadine were determined in 8 healthy volunteers. Human serum samples (1.0 mL) spiked with known concentration of loratadine and 50 ng diazepam as an internal standard were alkalinized with 500 µL of 10% Na2CO3 and extracted with 7 mL of mixture of isopentane and hexane (2:1, v/v) for 5 min. Extracts were centrifuged and 6 mL of organic layer was back-extracted with 150 µL of 12.5% H3PO4 for 1 min. One hundred microliters of centrifuged aqueous layer were injected onto reversed-phase octadecyl column and eluted with a mixture of acetonitrile, water, NH4H2PO4 and phosphoric acid (43: 57: 0.6: 0.3, v/v/w/v) at a flow rate of 1.5 mL/min. UV detection was performed at 200 nm with a limit of quantification of 0.5 ng/mL. The calibration curve obtained using peak area ratios showed a good linearity ($R^2 = 0.9991$) in the concentration range 0.5 ~ 50 ng/mL.