대기-11 도로변의 대기확산 예측을 위한 GUI System 개발

오은주*, 이화운
부산대학교 대기과학과

1. 서 론
NOx는 1차적으로 교통기관, 공공설비, 그리고 기타 산업 시설물에서 방출되어진다. 1990년 제시된 미국 환경청(EPA)의 자료에 의하면 1992년에 미국 NOx 방출은 23.2백만 톤이었고, 그 중에서 고속도로에서 주행중인 차량에 의해 32.5%, 전기설비 32.0%, 산업시설물 5.0%, 그리고 비포장 도로에서 주행중인 차량에 의해 12.0%이었고, 기타가 19.0%이었다. NOx 중 NO는 고온의 연소 과정 중에서 방출된 NOx의 90% 이상을 차지하고 있고, NO2는 대기 중에서 NO의 산화에 의하여 생성되는데 NO의 평행 농도는 온도가 상승하면 급격하게 증가하기 때문에 연소 온도를 높이면 NOx는 증가하게 되므로 대도시에서 의 NOx 주요 배출원은 자동차의 연소 과정에서 발생한다.

본 연구는 이러한 자동차의 주행에 의한 NOx(또는 부유 입자성 물질)의 예측에 필요한 background 농도의 설정을 위해 현 상태의 농도 과학과 예측에 사용되는 기상data의 설정을 목적으로 하며, plume식 및 puff식을 사용하여 NOx(또는 부유 입자성 물질)의 연평균을 예측한다. 이러한 예측을 보다 손쉽게 하기 위해서 본 시스템(RT-GAS)을 개발하였다. 본 시스템은 Graphic User Interface(GUI)을 이용하여 사용이 편리한 마우스 중심의 간단한 조작으로 사용된다. 특히, 계산조건의 입력, 대기확산의 계산, 결과의 표시가 하나의 종합적인 메뉴화면에서 효율적으로 작업이 가능하다.

2. 도로 교통 대기 확산 계산방법
2.1 도로 교통 대기 확산 계산식
본 시스템에서 사용되는 도로교통대기확산의 계산식은 정규형plume식과 적분형 간이 puff식의 2가지이다.

plume식은 풍속이 1m/s보다 강한 바람이 부는 경우에 사용되며, 다음의식으로 표현된다.

\[
C(x, y, z) = \frac{Q}{2\pi \cdot u \cdot \sigma_y \cdot \sigma_z} \exp\left(-\frac{y^2}{2\sigma^2_y}\right) \left[\exp\left(-\frac{z+H^2}{2\sigma^2_z}\right) + \exp\left(-\frac{(z-H)^2}{2\sigma^2_z}\right)\right]
\]

여기서, \(C(x,y,z) \) : 지점\((x,y,z)\)에서의 NOx, SPM농도[ppm,mg/m3], \(Q \) : 정오점원의 NOx, SPM의 배출량 [ml/s, mg/s], \(u \) : 평균풍속 [m/s], \(H \) : 배출원의 높이 [m], \(\sigma_y \), \(\sigma_z \) : 수평(y), 수직(z)방향의 확산폭[m], \(x \) : 풍하거리 [m], \(y \): x축에 직각인 수평거리 [m], \(z \) :
\[z : x축에 직각인 연직거리 [m] 이다. \]

puff식은 풍속이 1m/s이하의 바람이 부는 경우에 사용되며, 다음의 식으로 표현된다.

\[
C(x, y, z) = \frac{Q}{(2\pi)^{3/2}} \cdot a \cdot \gamma \left[\frac{1 - \exp\left(-\frac{1}{t_0^2}\right)}{2l} + \frac{1 - \exp\left(-\frac{m}{t_0^2}\right)}{2m} \right]
\]

\[
l = \frac{1}{2} \left[\frac{x^2 + y^2}{a^2} + \frac{(z-H)^2}{\gamma^2} \right], \quad m = \frac{1}{2} \left[\frac{x^2 + y^2}{a^2} + \frac{(z+H)^2}{\gamma^2} \right]
\]

여기서, \(t_0 \) : 초기 확산폭에 상당하는 시간 [s], \(a, \gamma \) : 확산폭에 관한 계수이다.

2.2 계산식의 기본 parameter

일반적으로 도로의 구조(평면의 도로, 성토(절토)의 도로, 절토(MERCHANTABILITY)의 도로, 고가도로)의 계산식에 사용되는 기본 parameter 나타낸다. 물론 본 시스템은, 여기에 나타낸 기본 parameter를 설정하는 방법을 사용하지 않고, 배출원의 위치, 확산폭, 배출량 등을 직접 설정하는 것도 가능하다.

3. 시스템의 내용

본 시스템을 기동하면 다음의 Fig.1의 화면이 나타난다. 도로조건, 교통조건, 기상조건을 입력하며, 여러 가지 도로조건, 교통조건, 기상조건의 입력과 변경의 방법을 사용할 수 있다. 조건의 입력을 끝낸 후에는 도로에서의 자동차의 배출원에 의한 NOx, SPM의 대기오염의 확산을 계산한다. 예측지점의 선택방법에 따라서, 평면 계산과 단면계산의 2 종류의 대기오염의 확산의 계산을 행할 수 있다. 본 시스템에서는 [평면 계산]의 결과를 같은 농도선을 나타낸 [평면등농도선도]로, [단면계산]의 결과를 같은 농도선을 나타낸 [단면등농도선도] 또는 배출원으로부터 거리에 따른 농도를 나타내는 [거리감소도]로 표시한다.
Fig. 1 GUI screen of road traffic air diffusion simulation system