수환경-P1 영산호의 부영양화 조사 연구
이지홍*, 조기안
초당대학교 공과대학 환경공학과

1. 서 론
영산호와 같은 경제적 수계에 인과 질소 등 다량의 영양염류가 유입됨으로써 일차생산자인 광합성 조류가 급격히 증가하여 부영양화 현상이 야기된다.

상류 주변 지역에는 금연한 산업활동에 따른 인구 증가와 주거지역의 확장 등으로 생활수수의 증가와 농업 경작 방식의 변화로 화학비료 및 농약사용이 급증하고 있어, 영산강 하류의 수질은 물리적, 화학적, 생물학적 특성이 변화되어 수질이용에 많은 지장을 초래하게 된다.

따라서 본 연구는 이러한 특성에 따른 호수의 부영양화의 변화를 알아보기 위하여영산호의 물리·화학적 그리고 영양염류의 특성에 대하여 조사를 실시하였다.

2. 본 론
2.1. 분석 항목
수온, 용존산소(Dissolved Oxygen: DO) 및 Fluorescence는 in situ probe (MINI STD/CTD model SD204)로 현장에서 직접 측정하였으며, pH : 691 pH Meter를 이용하여 측정하였다. 생물학적 산소 요구량 (Biological Oxygen Demand), 화학적 산소요구량 (Chemical Oxygen Demand), 부유물질 (Suspended Solid)과 영양염류 T- N, NH4-N, NO2-N, NO3-N, PO4-P, T-P 및 등의 조사항목은 현장에서 시료를 수집하였으며 협력해법에 1) 측정하였다.

2. 2. 결과 및 고찰
수온은 8.77~33.69℃의 범위이며, pH는 6.54~9.97의 범위로서 큰 변화를 보였다.

Fig.1. The DO Variations yeoungsan lake-4
DO는 0.16~22.43mg/ℓ로 큰 변화를 보였으며, Fig.1와 같이 무산소층이 형성되는 것으로 나타났다. 억류소는 0.37~249.26μg/ℓ으로 4차 및 5차에서 높은 억류소가 나타내었다. BOD는 0.33~12.02mg/ℓ 이었으며, COD 2.60~11.20mg/ℓ 호소수 수질기준 II, V 등급을 나타내었다. SS는 1.60~461.60mg/ℓ로 우수의 영향을 받아 지층에서 높게 나타났다. 영양염류인 총 질소는 1.090~11.674mg/ℓ, 암모니아질 질소는 0.003~0.922mg/ℓ, 아연산성 질소는 0.002~1.148mg/ℓ, 질산성 질소는 0.103~1.049mg/ℓ 값을 보였다. 총 인은 0.058~0.688mg/ℓ 이었으며, 인산염염은 0.001~0.047mg/ℓ 이었다.

Table. 1. Carlson’s TSI(TP) of each sampling point from Yeoungsan Lake

<table>
<thead>
<tr>
<th>Classification</th>
<th>Yeoungsan Lake-1</th>
<th>Yeoungsan Lake-2</th>
<th>Yeoungsan Lake-3</th>
<th>Yeoungsan Lake-4</th>
<th>Yeoungsan Lake-5</th>
<th>Yeoungsan Lake-6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency %</td>
<td>Frequency %</td>
<td>Frequency %</td>
<td>Frequency %</td>
<td>Frequency %</td>
<td>Frequency %</td>
</tr>
<tr>
<td>Oliotrophic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mesotrophic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eutrophic</td>
<td>24 100</td>
<td>24 100</td>
<td>24 100</td>
<td>46 100</td>
<td>36 100</td>
<td>36 100</td>
</tr>
<tr>
<td>Sum</td>
<td>24 100</td>
<td>24 100</td>
<td>24 100</td>
<td>46 100</td>
<td>36 100</td>
<td>36 100</td>
</tr>
</tbody>
</table>

영산호의 지점별 영양상태를 분석하여 보면 Table. 1.에서 보는 바와 같이 Carlson2)이 제시한 지수 (TSI)를 사용하여 계산하였으며, YL-1지점의 TSI(TP) 78.50~98.41, YL-2지점의 TSI(TP) 75.85~92.48, YL-3 지점의 TSI(TP) 71.57~82.98, YL-4지점은 TSI(TP) 67.00~85.70, YL-5지점의 TSI(TP) 60.87~95.70, YL-6지점의 TSI(TP) 64.15~82.95로 모든 지점에서 100% 부영양상태로 나타났다. 송3)에 의하면 Carlson의 TSI(TP)가 최저 50에서 최고 91로 평균 71을 나타내고 있어 100% 모두 부영양상태를 나타내고 있어 본 연구와 유사한 경향을 나타내고 있다.

3. 결론
영산호의 조사지점 모두가 호소수질환경기준 II~V 등급을 나왔으며, 영산호로 유입되는 영산강 지천의 영향을 강하게 받는 것으로 나타났다.
영산호의 영양정도를 판정해 볼 때 질소와 인 농도가 과다한 것으로 나타났으며, 영양상태는 TSI(TP) 60.87~98.41로 부영양상태를 지나 과영양상태에 이르는 것으로 판단된다.

참고문헌