Active Contours를 사용한 얼굴 검출

정도준*, 장재식*, 박세현**, 김형준*
*경북대학교 컴퓨터공학과
**조선대학교 컴퓨터공학과

Face Detection Using Active Contours

Do-Joon Jung*, Jae-Sik Chang*, Se-Hyun Park**, Hang-Joon Kim*
* Dept. of Computer Engineering, Kyungpook National University
** Dept. of Computer Engineering, Chosun University
E-mail: * {dijung, jschang, kimjh}@ailab.knu.ac.kr
** sehyun@chosun.ac.kr

요 약

본 논문에서는 주어진 입력 이미지에서 얼굴 영역을 검출하기 위한 액티브 컨투어 모델 (active contour models)을 제안한다. 제안한 모델은 스킨 칼라 모델(skin color model)에 의해 표현되는 사람 얼굴의 칼라 정보를 이용한다. 본 논문에서는 점점(cusps), 모서리 (corners), 그리고 자동 위상 변화(automatic topological changes)을 고려한 레벨 셋 메소드(level set method)를 사용하여 액티브 컨투어를 진화 시킨다. 실험 결과는 제안한 방법이 얼굴 영역 검출에 효과가 있음을 보여준다.

1. 서론

사람 얼굴을 자동으로 인식하는 것은 비디오 컨퍼런스(video conference)나 보안 시스템과 같은 응용분야에서 매우 중요하게 여겨져 왔다. 얼굴 영역 검출은 완전히 자동으로 사람 얼굴을 인식하고자 하는 인식기의 문헌에 있어서 가장 중요한 단계이므로 중요하다. 최근까지 많은 연구자들이 이미지에 나타난 사람 얼굴을 검출하고자 한 때 사람 얼굴의 스킨-칼라(skin-colors)의 특성을 나타내는 확률적 모델을 사용하여 왔다[6]. 본 논문에서는 [1]에서 소개된 "액티브 컨투어 모델"로 잘 알려진 deformable model에 의해 하나 혹은 여러 개의 얼굴 영역의 온과선을 검출하는데 초점을 맞춘다. 커브(curve)를 따라 에너지 함수를 최소화하는 방향으로 커브를 진화시키는 액티브 컨투어 모델 (snake)라고 할 수는 주어진 이미지에서 물체의 온과선을 검출하는데 널리 사용되고 있다[1][2][3]. 액티브 컨투어 모델의 목적은 에너지의 감소 과정을 반복 수행 함으로써 영상 내에서 찾고자 하는 영역의 온과선을 검출하는 것이다. 이 방법은 초기 컨투어를 사용자에게 입력 받는 세미-오토메틱(Semi-automatic)한 영상 분할 방법이다. 액티브 컨투어는 에너지 함수를 최소화하
스킨 칼라로 얼굴 영역을 검출하는 것은 얼굴을 검출하고 추적하는 업에 있어서 신뢰할 수 있는 방법이다. 대부분의 비디오 카메라에서는 얼굴 영상을 RGB 공간의 각각의 3개의 성분을 이용하여 검출하는 것이 일반적이다. 그러나, 이미지의 밝기(brightness)는 칼라 성분의 세기 구성요소(R,G,B)를 각각 밝기값(intensity)으로 나눌 수 있다. 칼라에서 밝기가 세기된 영역에서 두 가지 구성요소(r,g)의 밝기가 표준화된 색상 벡터의 성질(chromatic) 칼라로 알려져 있다. 사람 얼굴의 칼라 모델은 색상 공간의 각 영역에서 구분을 이루고, 2D 좌우선(2D-Gaussian) 분포로 근사화될 수 있다. 따라서 스킨 칼라 모델은 색상 칼라 공간(Chromatic color space)에서 얼굴 피부 색상을 r, g 성분이 2D 좌우선 모델을 따른다고 가정하고 근사화된 모델이며 아래와 같이 표현된다.

\[
\begin{align*}
\mathbf{r} &= \frac{R}{r + g + b}, \quad g = \frac{G}{r + g + b} \\
N(m, \Sigma^2), \quad \text{where } m = \langle \tilde{r}, \tilde{g} \rangle \\
&= \frac{1}{S} \sum_{s=1}^{S} \tilde{r}_s, \quad \tilde{g}_s = \frac{1}{S} \sum_{s=1}^{S} g'_s, \quad \Sigma = \begin{bmatrix}
\rho_{r,s} & \sigma_r^2 \\
\rho_{g,s} & \sigma_g^2
\end{bmatrix}
\end{align*}
\]

2.2 에너지 함수

에너지 함수는 엑티브 컨투어 모델의 에너지 함수를 사용하여 정의되며, 이 에너지 함수를 최소화하는 과정을 통하여 엑티브 컨투어 모델이 문제의 음직임으로 수렴하도록 한다. 본 논문에서 제안한 엑티브 컨투어 모델의 에너지 함수는 다음과 같이 주어진다.

\[
E(\tilde{r}, \tilde{g}, c, C) = \mu \cdot \text{Length}(C) + \nu \cdot \text{Area}(i) \\
+ \lambda_1 \int_{\text{inside}(C)} \left(| \tilde{r} - r(x, y) |^2 + | \tilde{g} - g(x, y) |^2 \right) dxdy \\
+ \lambda_2 \int_{\text{outside}(C)} | I(x, y) - c |^2 dxdy
\]

\[
\mu, \nu, \lambda_1, \lambda_2 \text{ 는 상수이고, } c \text{는 컨투어 } C \text{의 바깥부분에 }
\]
2.3 레벨 셋 메소드

레벨 셋 메소드는 동적으로 변화하는 곡선과 곡면을 근사화하기 위한 수학적인 방법(Numerial Algorithms)이다. 이 방법을 사용하면 곡선의 변화를 알고 있을 때 변화하는 곡선의 진화를 추론할 수 있다. N-1차원의 흐름의 레벨의 곡면 A가 시간이 지난 후에 따라 범선 방향으로 곡면의 변화도 F로 움직일 때 이동한 곡면의 전체 침해 A(Δt)에 대해 N차원 공간상에서 associated Euler-Lagrange식으로 나타낼 것이 레벨 셋 방정식이다[5].

본 논문에서 편두어는 레벨 셋 함수인 ϕ의 zero level set으로 나타내어진다.

\[
\begin{align*}
C = & \{(x,y): \phi(x,y) = 0\}, \\
C_{\text{inside}} = & \{(x,y): \phi(x,y) > 0\}, \\
C_{\text{outside}} = & \{(x,y): \phi(x,y) < 0\}.
\end{align*}
\]

2차원 폐곡선인 zero level set의 시간에 따른 모양을 나타내기 위해, 레벨 셋 함수는 3차원 함수인 ϕ로 두면, C=A+ϕ를 어떤 임의의 시간 t에서 곡선의 현재 진행된 모습은 ϕ=0가 되는 부분을 구하여 알 수 있다. 따라서 에너지는 변수 C가 ϕ로 표현되어 있는 레벨 셋 공식으로 표현될 수 있다.

\[
E(r, g, c, \phi) = \mu \int_0^{r-1} \int_0^{g-1} \delta(\phi(x,y)) |\nabla \phi(x,y)| \, dx \, dy
+ \nu \int_0^{r-1} \int_0^{g-1} H(\phi(x,y)) \, dx \, dy
+ \lambda_1 \int_0^{r-1} \int_0^{g-1} \left(r - r(x,y) \right)^2 \\
+ \left(g - g(x,y) \right)^2 \right) H(\phi(x,y)) \, dx \, dy
+ \lambda_2 \int_0^{r-1} \int_0^{g-1} \left| I(x,y) - c \right|^2 (1 - H(\phi(x,y))) \, dx \, dy,
\]

N*은 주어진 이미지의 크기이고, H(ϕ)는 Heaviside 함수이며, \(I \)는 dirac delta 함수이다. 상세한 내용은 [2]를 참조하기 바란다.

함수 \(\phi \)를 위한 associated Euler Lagrange 식을 계산하기 위해, 함수 H의 부다일립화된 형태인 \(H(\phi) = \text{arctan}(\phi) \) 가 \(\dot{\phi}(x,y) = 1 / (1 + \phi^2) \) 을 사용한다. associated Euler-Lagrange식은 아래와 같이 유도될 수 있다.

\[
\frac{\partial \phi}{\partial t} = \delta_0 \mu \text{div} \left(\frac{\nabla \phi}{\| \nabla \phi \|} \right) - \nu - \lambda_1 \left(r - r \right)^2 - \left(g - g \right)^2 + \lambda_2 (1 - c)^2.
\]

2.4 구현

본 논문에서는 주어진 입력 이미지에서 알수 영역을 추출하기 위하여 다음과 같은 방법으로 알고리즘을 구현하였다.

초기 편두어

\[
\begin{array}{c}
\phi \quad \text{값들을 초기화} \\
\text{c 계산} \\
\phi^{n+1} \text{계산} \\
\text{종료 조건}
\end{array}
\]

그림 I. 구현된 알고리즘의 블록 다이어그램

1. 편두어를 입력 받아 zero level set으로 초기화 한다. \(n=0 \)
2. 편두어 외부 편집을 밝기값 평균인 c를 계산 한다.
3. (1)의 PDE를 계산하여 \(\phi^{n+1} \)을 구한다.
4. 종료 조건을 만족할 때까지 단계 1, 2, 3을 반복한다.
복한다.
종료 조건은 전투어 내부에 속하는 팩션의 개수의 변화가 threshold 보다 작은 경우이다.

3. 실험결과

제안된 방법은 팬티즘 4 시스템에서 Visual C++ 6.0 으로 구현되었고, 입력 영역이 포함되어진 200개의 각각 이미지에 대해서 실험하였다. 우리는 200개의 샘플 이미지로부터 스킨 각각 모델의 평균과 공분산 행렬을 구하였다. 표 1은 스킨 각각 모델의 파라미터를 보여준다. 모델이 단지 여섯개의 파라미터가 가지고 때문에 다른 사람이나 빛의 조건에 대해 쉽게 추정하고 적용할 수 있다.

![그림 2. 액티브 전투어의 진행 과정. 초기 \(a = 83 - \left((x - 135)^2 + (y - 111)^2 \right)^{1/2} \)]

영상에서 한 개 이상의 입력 영역을 포함하는 경우가 반복히 발생한다. 이때 영상에 포함된 여러 개의 입력 영역을 모두 검출 해야 할 경우가 있다. 그림 3은 2개의 입력 영역을 검출하는 과정을 보여준다. 액티브 전투어이 입력 영역의 개수에 독립적으로 동작함을 보여주고 있다. 종료 조건의 threshold는 10으로 하였다.

![그림 3. 두개의 입력 영역이 나타난 이미지에서 액티브 전투어의 진행 과정. 초기 \(a = 83 - \left((x - 135)^2 + (y - 111)^2 \right)^{1/2} \)]
제안된 방법에서는 얼굴의 색상 정보와 밝기 정보를 이용하여 얼굴 영역을 검출 하였다. 실험 결과, 배경이 얼굴과 유사한 색상을 포함하거나 얼굴 영역의 조명이 고르지 않은 경우에도 오류가 발생 하였다. 보다 좋은 결과를 위해서 얼굴의 모양, 질감, 이목구비의 위치 정보와 같은 얼굴에 대한 사전 정보를 추가적으로 사용해야 할 것이다.

4. 결론

본 논문에서는 주어진 이미지에서 사람의 얼굴을 검출하기 위한 액티브 컨투어 모델을 제안하였다. 얼굴 영역을 검출하기 위해서 스킨 칼라 모델을 레벨 셋 메소드에 기반한 액티브 컨투어 모델과 결합하였다. 제안된 방법은 복잡한 배경을 가진 이미지에서도 여러 개의 사람 얼굴을 검출할 수 있었다. 실험 결과는 제안된 방법이 얼굴 영역 검출에 효과가 있음을 보여준다.

[참고문헌]

