형판정함을 이용한 영상 정규화에 기반한
얼굴 인식 알고리즘

신현규\(6\), 최영규
한국기술교육대학교 정보기술공학부
\{newcach, ykchoi\}@kut.ac.kr

Face Recognition base on Image Normalization by Template Matching

Hyun-Keum Shin, Young-Kyu Choi
School of Information Technology, Korea University of Technology and Education

본 논문에서는 새로운 얼굴 인식 방법을 제안한다. 제안된 방법은 입력 영상에서 눈이라 생각되는 영
역을 형판정함법을 이용하여 먼저 추출하고, 앞 눈의 위치 정보를 사용하여 얼굴 영역의 크기와 회전
정도를 보정하여 정규화된 얼굴영상을 만든다. 결국 PCA 방법을 사용하여 인식하게 된다. 이렇게 함으로
서 PCA가 안정된 영상이 입력되면 좋은 인식률을 보이지만 전반적인 영상의 변화에 잘 대응하지 못하고,
특정한 배경의 경우 얼굴영역의 위치 변화에 민감하며, 많이 기울어진 영상에 채택하는 단점을 형판정함
을 통한 전 처리 과정을 통해 보완할 수 있게 된다. 실험 결과 제안된 방법이 PCA의 인식 성능을 크게
향상시킬 수 있을음을 알 수 있었다.

1. 서론

인터넷의 퍼블릭보안의 침입 시스템과 얼티미터의 급속한 발전을 가져왔으며 보안 시스템은 기존의 암호암호해서 지문, 환풍, 서명, 얼굴, 음성과 같은 자동화보안시스템에 대한 요구가 급증하고 있다. 최근 지문과 달리 사용자가 기부받지 않아 인증을 수행하는 얼굴인식의 적합이 발달한 연구가 진행되고 있다.

얼굴영역 추출방법[3]에는 지식기반 방식[4](Knowledge-based), 얼굴특성의 복잡성을 이용하는 방법[5](Feature invariant), 형판정함(Template matching)을 이용하는 방법[6], 외형을 이용
하는 방법[7](Appearance-based method) 등이 있다.

얼굴 특성간의 관계를 이용하기는 정확한 방법은 여러 얼굴이 존재
하거나 복잡한 배경에서는 얼굴을 찾기 어려운 단점이 있고,
얼굴 영역의 특성값을 이용한 방법의 경우 얼굴 영역 빼움이 아니라, 일부 얼굴
부분만을 찾거나 얼굴과 비슷한 배경이 존재할 경우 잘못된 결과가 나타나 낼 수 있다.

본 연구에서는 전처리 과정에서 눈 영역을 형판정함을 이용하여
찾은 후 회전(Rotation)과 스케일링(Scaling)의 전처리를 거쳐 얼굴
영역을 결정하여 주성분 분석(Principal Component Analysis) 방법을
이용하여 얼굴 인식을 수행하는 방법을 제안한다.

본 논문에서는 먼저 2장에서는 기존에 제안된 방법들과 본 논문의
동기를 설명하고 3장에서 얼굴 영상의 학습방법을 소개한다. 4장에서는 제안하는 인식 방법을 소개하며, 5장에서는 실험결과를
다루고 마지막으로 6장에서 결론을 둘러 negó다.

2. 기존 연구 및 논문진행 지역

1991년 Matthew A. Turk와 Alex P.Pentland에 의해 제안된
고유얼굴(Eigenface)을 이용한 얼굴인식[7] 방법, 즉 PCA방법
이란 주로 다루고 있던 고유원소의 신호를 저차원으로 줄여 다
무기 쉽게 해주는 통계적 방법을 말하는데 인식하고자 하
는 얼굴의 관측값 행렬(Covariance matrix)에 대한 고유벡터
(Eigenvector)를 계산하고 세로에 입력된 얼굴을 고유벡터
시간으로 무사시켜 그 성분들을 비교함으로써 인식을 수행 하는
방법이다.

일반적으로 ICA(Independent Component Analysis)가 눈, 코, 입술 등 얼굴의 독립적인 특성을 추출하여 인식하는데 이러한
얼굴의 구성요소를 놀라마 다수 학문과 여러 수학기반의 방법들이
이에 이어 가장 많이 사용하는 방법으로, 이와 같은 얼굴영역에
서 주파수에서 고주파로서의 전파적인 특성을 추출하여 인식을 하도록 적절한 영상이 입력될 경우 매우 안정적인
인식율을 보이는 것으로 알려져 있다. 이에 비해 이 방법은 전반적인 영상의 변화에 잘 대응하지 못하고, 특징한 배경
일 경우 얼굴영역의 위치 변화에 민감하며, 많이 기울어진 영상에
채택하지 않는 단점을 지니고 있다.

얼굴인식의 또다른 접근방법의 하나인 일상적인 영상은 모델의
행동을 예시로 해두고 입력영상에서 이러한 형상 없이 그
유산가능시 근거로 인식을 수행하는 방법이다. 이 방법은 처리시간
문제나 모델의 크기변화나 회전에 잘 대응하지 못한다는
단점에도 불구하고 전반적인 영상의 변화에 매우 안정적인
장점이 있다. 실험 결과 이러한 방법을 얼굴의 인식과정에
사용하는 것에는 많은 문제점이 있지만, 적절한 방법으로 모델을
만들 경우 얼굴 영역을 추출하는 방법으로 사용하는 경우에는
매우 안정적인 결과를 나타내는 것을 알 수 있었다.

이러한 결과들을 바탕으로 하여 본 논문에서는 새로운 얼굴
인식 알고리즘을 제안한다. 제안된 알고리즘은 얼굴영역을 잘못
추출된 경우 매우 안정적으로 인식한다는 PCA의 장점과, 설명
물을 통해 확인된 형판정함을 통한 안정적인 얼굴 영역의 추출을
논리적인 방향으로 한다. 즉 입력이 영상이 주어지면 먼저
형판정함을 통해 얼굴 영역을 추출하고, 이 결과를 이용하여
얼굴영역을 정규화한 후 정규화된 얼굴 영상을 PCA에 입력하여
인식함으로써 인식을 높이지다 하였다.

3. 얼굴 영상의 학습

얼굴 영상의 학습과정은 PCA의 경우와 동일하다. 여기서 고려해
하고는 사용한 압 얼굴 라이브러리에 저장되는 모델의 얼굴 크기
가능한 한 일정하게 유지하도록 하는 것이다. 이를 위해 본 연구에서
채택한 방법은 논 영역의 위치를 지정해 주는 방법이다. 그림 1은 전체
학습과정을 보여주고 있다.

먼저 모델 영상이 입력되면 마우스를 사용하여 양축 노인의 중심을
지정해 준다. 다음으로 이 두점을 기준으로 하여 일정한 영역을
얼굴 영역이라고 판단할 수 있는데, 이렇게 추출된 얼굴 영상을 일정한
크기에 정규화 한 후 학습을 위한 모델로 사용한다.

그림 1. 학습 과정

학습 모델(Training Set)을 모두 추출하였으면 이 영상들을
이용하여 PCA방법의 학습과정을 수행한다.

3.1 PCA(Principal Component Analysis) 알고리즘

주요 분석은 데이터를 메타데이터의 분석이 큰 몇 개의 고유방향
에 대한 것으로 선형근사시켜 데이터의 차원을 줄이는 방법이다.

PCA에서의 고유두개를 방법은 얼굴 공간에 대한 차원을 줄이고
트레이닝 영상(Training face)의 변화량을 관찰하고 이 변화량을 적은 수의 변수로 기술하는 것이다. 고유두개 방법을 수행하기
위해서는 먼저 트레이닝 셋들의 평균영상의 식(1)과 같으며 구하지
각각에 대한 차 영상률을 식(2)와 같이 구한다.

시 = \frac{1}{M} \sum_{m=1}^{M} \Gamma_{m}

(1)

\Phi_{i} = \Gamma_{i} - \Psi

(2)

\text{그리고 식(1)과 (2)를 이용하여 식(3)와 같은 공분산행렬의}
\text{고유벡터를 구한후 대응되는 고유 값의 크기에 따라 고유벡터를}
\text{정렬하여 새로운 행렬을 구하는데 이것을 고유얼굴행렬}
\text{(Eigenface matrix)라 한다.}

C = \frac{1}{M} \Phi^{t} \Phi

(3)

\text{세로는 얼굴영상에 성분을(Weight)는 식(4)에 의해 구한으나

\text{그 트레이닝 셋에 대한 공통벡터를 구한후에 고유벡터 공간

\text{에서의 성분벡터의 비교와 각 기하학적 거리(Euclidean distance)

\text{가 최소가 되는 얼굴영상을 입력얼굴영상과 가장 호환된 얼굴로

\text{안식한다.}}

W_{j} = \Phi(\Gamma - \Psi)

(4)

영역을 부여하는 방법은 RBF, MLP, SVM과 같은 신경망(Deep
Architecture)을 이용한 방법과 같이 층간의 역할을 가アイテム
그림에 설명하는 Nearest Neighbor방법이 있는데 본 연구에서는 트레이닝
셋의 성분값과 새로운 얼굴이미지의 성분값과의 거리를 측정하는
기하학적 거리 방법을 이용하였다.

4. 제안된 인식 알고리즘

4.1 인식 알고리즘 개요.

제안된 알고리즘은 한정정점을 이용해 먼저 얼굴 영역을 찾고
상의 영역을 정확하게 PCA를 이용한 인식부의 입력
영상으로 사용하는 것을 그 기준으로 하여, 그림 2는 제안된
인식 방법을 보여주고 있다. 제안된 인식 방법에서 가장 중요한
부분이 한정 정점을 이용하여 얼굴 영역을 추출하는 과정과 얼굴
영역의 정규화 과정이다.

4.2 향상 정점을 이용하는 영역 탐색

본 연구에서 사용한 얼굴 영역의 정점은 영역을 사용하였다.

눈은 얼굴에서 가장 주요한 특징에 민감한 영역으로 많은 영역들
중에서 탐색의 주요 영역으로 사용한다. 본 연구에서는
일반적인 눈의 위치를 먼저 인식에 사용하였는데, 일반적으로 눈의
크기가 작고, 안정의 유무에 따라 눈 근처의 영역도 커질 수 있음

따라서 일반적인 눈 모델을 만들기 위해서는 가장한 영역의
영역을 사용해야 한다. 본 연구에서는 20명의 눈 영역에 일반적인 눈 모델을 만들었는데 영역을 사용하여
사람 10명과 그렇지 않은 10명을 사용하였다.

눈 모델이 만들어진다면 인식 영역에서 눈 모델과 유사한 부분을 합성
정합 방법으로 찾게 된다. 평균화기법은 정규화 코 роль레이션 (No
nullized Correlation, NC)을 사용하였는데, 그 방법은 다음 수식과 같다.

\[M(u, v) = \frac{1}{N} \sum_{x=0}^{L-1} \sum_{y=0}^{H-1} ((x, y) - \bar{f})((x+u, y+v) - \bar{f}) \]

(5)

이 방법은 영상과 모델의 밝기의 전형적인 차이와 영상과
모델간 기하학적인 유사도를 측정하는 방법으로 모든 화소에
대한 밝기 값의 변화되는 기울기의 값이 변하지 않는 것
정점이 있다. 식(5)에서 \(i\)는 영상의 총화값이며 \(j\)는 처리
영역내의 총화값을 나타내며, 결과는 항상 1에서 1사이의
값으로 나타나며 1이면 완전히 맞게 나타나고 -1이면 부정확한
것이다.

또한 이러한 방법의 코 роль레이션 계산에는 일반적으로 매우
시간이 많이 걸리게 되는데, 처리시간을 줄이기 위해 본 연구
에서는 이상 판별자리 사용하였다. 즉 영상의 패턴에서
기하상의 특징을 체계적으로 전체 세프를 수행하고, 하위 영상에서 상위 영상의 주위를 탐색하는 방법을 채택하였는데, 이러한 방법을
통해 등장도 다양한 처리시간의 감소를 가져왔다.

제안 정점의 또 다른 문제점이 영상의 스펙터 변화나
기울기 변화에 취약하다는 것이다. 본 연구에서는 이러한
문제를 줄여주기 위해 여러 크기에 각각의 눈 모델을 피연하여
다양한 스펙터와 각각의 모델을 사용하였는데, 표 1은 이러한
변화의 정도를 보여주고 있다.

<table>
<thead>
<tr>
<th>표 1. 눈 영역의 크기 및 각도</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
</tr>
<tr>
<td>0.7배</td>
</tr>
<tr>
<td>0.8배</td>
</tr>
<tr>
<td>0.9배</td>
</tr>
<tr>
<td>1.0배</td>
</tr>
<tr>
<td>1.1배</td>
</tr>
<tr>
<td>1.3배</td>
</tr>
</tbody>
</table>

결국 눈 영역을 스페어과 회전에 따라 각각 25개로
의.hex (Template)을 사용하여 눈 영역 추출과 사용하였다.
이러한 스페어 그리고 각각의 정점을 통해 가장 적합하다고 판단 되었
것으로 제안된 방법에서 눈 모델을 인식을 위해서 사용하는 것이
아니라 영역의 추출을 위해 사용된 것이므로 이 정도의
모델 사용하여도 좋은 결과를 나타낼 수 있다.

본 연구에서 사용한 눈 영역(Template)의 크기는 32x32를
사용하였는데, 일반적으로 혜연정점을 인식으로 사용하는 경우
코럼레이션 값이 0.8 이상이어야 충당적인 인식이 된다. 그러나
본 노출에서는 약간 비슷한 부분을 찾는 용도로 사용하는 경우
0.65-0.70 외에도 매우 안정적으로 눈 영역 찾아주는 것으로
4.3 정규화된 얼굴 이미지 생성(Normalized Face Image)

정규화된 얼굴 이미지는 4.2절에서 언급한 것과 같은 것으로,

\[v = \min(N_{\max}, -N_{\min}), +N_{\min}, \] (6)

위의 식에 \(\text{max} \)와 \(\text{min} \)는 입력 영상의 최대, 최소값이며,
\(N_{\max} \)와 \(N_{\min} \)는 세도문 범위의 최대, 최소값
으로 최소, 최대 정규화 방법은 입력 영상의 범위를 새로운 범위로 매핑 시킨다.

5. 실험 결과

본 실험은 IBM의 PC와 카메라가 있는 Kodak DVC325을 사용하였으며
5.1. Pentium - III Processor를 사용하여 운영체제(OS)는 Windows

최적의 성능을 보였다. 그림 3. 정규화된 이미지.

새로운 입력 영상에 영향이 있을 경우 전처리 과정 후

\[\text{7.3} \]의 형식을 이용한 스케일링(Scaling) 결과는

\[\text{그림 4.(a) 최적 보정 결과} \]

\[\text{그림 4.(b) 스키에 억 보정 결과} \]